CONCRETE ROOF TILES

TECHNICAL MANUAL

PRICE: R 395,00 (VAT INCL)

Produced by Isikhova Publishing & Communications 1/07
Preface

This manual has been compiled by the Concrete Manufacturers Association (CMA) to promote good roofing practice. Good roofing practice necessitates correct design and detailing, the use of good quality materials and proper installation procedures. Provided that these are done correctly, a concrete tile roof will provide years of maintenance free service enhancing the aesthetic appeal of the building. This manual has been compiled in compliance with the National Building Regulations, SANS 10062-2003 (Code of Practice for the fixing of concrete roof tiles) and accepted good building practice.

Acknowledgements

The CMA acknowledges the help and assistance from MiTek South Africa (Pty) Ltd and Victor Booth, Consulting Engineer.
CONTENTS

SECTION 1 GENERAL

<table>
<thead>
<tr>
<th>1.1</th>
<th>Typical applications</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Product range</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>Roof forms</td>
<td>20</td>
</tr>
<tr>
<td>1.4</td>
<td>Relative performance of standard roofing materials</td>
<td>22</td>
</tr>
<tr>
<td>1.5</td>
<td>General information</td>
<td>24</td>
</tr>
</tbody>
</table>

SECTION 2 TECHNICAL DATA

<table>
<thead>
<tr>
<th>2.1</th>
<th>Structural data</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Physical properties</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Underlays</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Below minimum pitch specification</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>Condensation and ventilation</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Roof pitch, wind forces and fixing recommendations</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>Estimating</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Tender specification and bill of quantities</td>
<td>51</td>
</tr>
<tr>
<td>2.9</td>
<td>General notes</td>
<td>55</td>
</tr>
</tbody>
</table>

SECTION 3 TILING PROCEDURE

<table>
<thead>
<tr>
<th>3.1</th>
<th>Inspection before tiling</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Setting out for tiling</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Loading of the tiles on to the roof</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Laying of tiles</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Eaves</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>Valleys</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>Ridges</td>
<td>66</td>
</tr>
<tr>
<td>3.8</td>
<td>Hips</td>
<td>68</td>
</tr>
<tr>
<td>3.9</td>
<td>Verges</td>
<td>69</td>
</tr>
<tr>
<td>3.10</td>
<td>Abutments and flashings</td>
<td>71</td>
</tr>
<tr>
<td>3.11</td>
<td>Inspection after tiling</td>
<td>75</td>
</tr>
</tbody>
</table>
CONTENTS

SECTION 4
DETAILING
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Preface</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Batten positions</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>Undertile membrane</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Condensation and ventilation</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>Eaves</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Valleys</td>
<td>89</td>
</tr>
<tr>
<td>4.7</td>
<td>Ridges</td>
<td>92</td>
</tr>
<tr>
<td>4.8</td>
<td>Hips</td>
<td>95</td>
</tr>
<tr>
<td>4.9</td>
<td>Verges</td>
<td>97</td>
</tr>
<tr>
<td>4.10</td>
<td>Abutments and flashing</td>
<td>99</td>
</tr>
<tr>
<td>4.11</td>
<td>Special roofs</td>
<td>101</td>
</tr>
</tbody>
</table>

SECTION 5
TIMBER ROOF CONSTRUCTION
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>General information</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Timber quality</td>
<td>106</td>
</tr>
<tr>
<td>5.3</td>
<td>Timber specification</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>Timber treatment</td>
<td>107</td>
</tr>
<tr>
<td>5.5</td>
<td>Storage of timber</td>
<td>107</td>
</tr>
<tr>
<td>5.6</td>
<td>Roof pitch and wind forces</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>Undertile membrane for roof tiles</td>
<td>109</td>
</tr>
<tr>
<td>5.8</td>
<td>Factory engineered trusses</td>
<td>111</td>
</tr>
<tr>
<td>5.9</td>
<td>Site manufactured trusses</td>
<td>112</td>
</tr>
<tr>
<td>5.10</td>
<td>Erection of trusses</td>
<td>115</td>
</tr>
<tr>
<td>5.11</td>
<td>The use of rafters only as roof supports</td>
<td>117</td>
</tr>
<tr>
<td>5.12</td>
<td>Fixing of battens</td>
<td>119</td>
</tr>
</tbody>
</table>

APPENDICES
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Legend</td>
<td>121</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Source documents</td>
<td>122</td>
</tr>
</tbody>
</table>
Concrete Roof Tiles

Section 1 General
Section 1: General

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Typical applications</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Product range</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Roof forms</td>
<td>20</td>
</tr>
<tr>
<td>1.4 Relative performance of standard roofing materials</td>
<td>22</td>
</tr>
<tr>
<td>1.5 General information</td>
<td>24</td>
</tr>
</tbody>
</table>
1.1 Typical Applications: Affordable Housing

Ormonde View, Gauteng

House Khoza, KwaZulu-Natal
Naturena 100 Oaks, Gauteng

Alabama Housing, North West Province
Luxury Houses

House Zimbali, KwaZulu-Natal

House Schroeder, Gauteng
Tribunal Gardens, Community Flats, Gauteng

Coastal Manors, Community Flats, KwaZulu-Natal
Windsor Crescent, Cluster Houses, KwaZulu-Natal

Lonehill Village, Cluster Houses, Gauteng
Tinza Apartments, Gauteng

Vecchio Village, Apartments, KwaZulu-Natal
Commercial Buildings

The Campus, Office Development, Gauteng

Bryanston Wedge, Office Development, Gauteng
Places of Worship

Shelanti Chapel, Gauteng

Bayside Church, KwaZulu-Natal
Church of Jesus Christ of Latter Day Saints, Gauteng

Rosebank Union Church, Gauteng
Crawford College, KwaZulu-Natal

Hlabisa Municipality, KwaZulu-Natal
1.2 Product Range

a) Tile Profiles

- Flat Double Roman Profile
- Bold Double Roman Profile
- Bold Roll Profile
- Marseilles Profile
- Flat Profile
- Double Pan Profile
b) Tile Fittings

- Butt Ridge
- Hip Starter
- Collar Mono Ridge
- Rake Verge
- Butt Mono Ridge
- Taper Ridge
- Ventilated Ridge
1.3 Roof Forms

- Intersecting hip roof
- Intersecting gable roof
- Hip to hip
- Gable to gable
- Dutch hip
- Hip gable
- Mansard
- Split gable
Bali
Double monopitch
Double pitch asymmetric
Parapet gable
Pyramid (4 sided)
Monopitch / lean to
Pyramid (6 sided)
A-frame
Straight dormer
Sloping dormer
Sloping dormer with sloping cheeks
1.4 Relative Performance of Standard Roofing Materials

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Concrete Roof tiles</th>
<th>Galvanised iron sheeting</th>
<th>Corrugated fibre cement sheeting</th>
<th>IBR metal sheeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative cost (including fixing)</td>
<td>0%</td>
<td>+28%</td>
<td>+66%</td>
<td>+62%</td>
</tr>
<tr>
<td>Durability</td>
<td>Life time</td>
<td>Reasonable</td>
<td>Reasonable</td>
<td>Reasonable</td>
</tr>
<tr>
<td>Life</td>
<td>+50 yrs</td>
<td>+5 yrs</td>
<td>+15 yrs</td>
<td>+5 yrs</td>
</tr>
<tr>
<td>Maintenance requirements</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>Excellent</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Hail resistance</td>
<td>Good</td>
<td>Good</td>
<td>Reasonable</td>
<td>Good</td>
</tr>
<tr>
<td>Noise resistance</td>
<td>Good</td>
<td>Very poor</td>
<td>Poor</td>
<td>Very poor</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Thermal efficiency</td>
<td>Excellent</td>
<td>Poor</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Ease of laying</td>
<td>Easy</td>
<td>Easy</td>
<td>Easy</td>
<td>Easy</td>
</tr>
<tr>
<td>Ease of repair</td>
<td>Easy</td>
<td>Reasonable</td>
<td>Reasonable</td>
<td>Reasonable</td>
</tr>
<tr>
<td>Wind resistance</td>
<td>Good</td>
<td>Reasonable</td>
<td>Reasonable</td>
<td>Reasonable</td>
</tr>
<tr>
<td>Pressed metal roof tiles</td>
<td>Fibre cement slate</td>
<td>Natural slate</td>
<td>Thatch</td>
<td>Coloured metal sheeting</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------</td>
<td>------------------------</td>
</tr>
<tr>
<td>+144%</td>
<td>+175%</td>
<td>+360%</td>
<td>+60%</td>
<td>+63%</td>
</tr>
<tr>
<td>Reasonable</td>
<td>Reasonable</td>
<td>Reasonable</td>
<td>Poor</td>
<td>Reasonable</td>
</tr>
<tr>
<td>+15 yrs</td>
<td>+15 yrs</td>
<td>+15 yrs</td>
<td>+10 yrs</td>
<td>+10 yrs</td>
</tr>
<tr>
<td>Repaint every 15 yrs</td>
<td>Minimal</td>
<td>Annual service</td>
<td>Over thatch every 10 yrs</td>
<td>Repaint every 10 yrs</td>
</tr>
<tr>
<td>Reasonable</td>
<td>Good</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Good</td>
<td>Poor</td>
<td>Reasonable</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Very poor</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
<td>Very poor</td>
</tr>
<tr>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td>Good</td>
</tr>
<tr>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
<td>Poor</td>
</tr>
<tr>
<td>SANS 1022-2006</td>
<td>SANS 803-2005</td>
<td>No SANS spec</td>
<td>No SANS spec</td>
<td>No SANS spec</td>
</tr>
<tr>
<td>Specialist</td>
<td>Specialist</td>
<td>Specialist</td>
<td>Specialist</td>
<td>Easy</td>
</tr>
<tr>
<td>Specialist</td>
<td>Specialist</td>
<td>Specialist</td>
<td>Specialist</td>
<td>Reasonable</td>
</tr>
<tr>
<td>Reasonable</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Reasonable</td>
</tr>
</tbody>
</table>
Concrete roof tiles are an outstanding example of a high quality, cost-effective solution for roofing. They have proved their worth over many years of trouble-free use, providing maximum protection against the elements. Concrete roof tiles are manufactured in an extensive range of profiles, colours and finishes which enhance the visual appearance of any roof and provide designers with a wide scope for expression.

a) Manufacture

Concrete roof tiles are manufactured from selected raw materials such as washed graded sand, portland cement, inorganic pigments and water. The tiles are extruded under pressure resulting in a product of high quality. The strength of concrete roof tiles increases with age.

b) Quality standards

Concrete roof tiles manufactured by members of the Concrete Manufacturers Association meet the requirements of SANS 542-2004 Standard specification for the manufacture of concrete roofing tiles. They are manufactured in accordance with the SANS ISO 9002 Quality Management System.

c) Surface coatings

Concrete roof tiles are manufactured in a vast range of finishes which will vary from one manufacturer to another. Surface finishes for tiles are categorised in accordance with SABS specifications. All surface coatings are applied under factory controlled conditions.

d) Colours

Large selections of standard colours are available. Fittings are available in colours to match tiles. For further information, colour charts, special colours and samples, contact the manufacturers.

<table>
<thead>
<tr>
<th>Category</th>
<th>Body Colour</th>
<th>Surface Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Category 1. Plain concrete tiles. No body colour. No surface finish.
Category 2. No body colour. The tile surface coating is applied in the manufacturing process.
Category 3. Body colour throughout. Colouring inorganic pigments are mixed in the concrete prior to the extrusion process.
Category 4. Body colour throughout. Coating, typically acrylic, is factory-applied. This eliminates colour variation and efflorescence.

Note: A wide range of fittings are available to match all roof tiles.

e) Definitions

For the purposes of this publication, the following definitions shall apply:

Abutment. An intersection on the roof surface and a part of the structure that rises above it.

Apex. The intersection of two or more roof slopes at the highest position on the roof.

Apron flashing. A flashing, the lower edge of which is dressed over the roof covering, and the upper edge of which is dressed up a vertical surface.
Bargeboard. A component fixed along the edges of a gable and covering the ends of the horizontal roof members.

Battens. Timber or steel members of small section fixed parallel to the line of the eaves, at right angles to the rafters, onto which tiles are fixed.

Bedding. The setting and pointing of tiles and fittings in mortar.

Bedding pieces. Small pieces of broken tile that are used to reinforce areas of bedding where excessive mortar shrinkage can occur.

Boards. Lengths of flat timber that are nailed to the rafters to form a soffit and act as a support for the underlay.

Cleat. A specially formed strip of corrosion-resistant material (e.g. of the same material as the valley liner) that is used to hold the valley liner in place.

Coastal area. The area between the sea and a line 5km inland.

Concealed gutter. A pre-formed channel (manufactured from a suitable corrosion-resistant material) that is overlapped by tiles and shaped to form a watertight joint at abutments (in conjunction with cover flashings).

Counter battens. Timber members of small section fixed between the battens and the underlying structure, normally at right angles to the direction of the battens onto which the tiles are laid.

Cover flashing. A flashing that is used in conjunction with other roof components (such as side gutters and apron flashings) and that overlaps any vertical parts of such components.

Eaves. The overhanging lower edge of a roof slope.

Fascia board. A member, cut from sheet material or timber that is fixed to the rafter ends, the wall face or the wall plate immediately below the eaves.

Flashing. A strip of flexible impervious material that is used to exclude water from the junction between a roof covering and another part of the structure.

Gable. The part of the wall above the general level of the eaves at the end of a ridge roof or of a partially hipped roof.

Gutter. Any form of roof-water channel at eaves, verges and abutments.

Head lap. The distance by which one course of tiles overlaps the course immediately below it.

Hip. The sloping intersection of two inclined roof surfaces that meet at a reflex angle (greater than 180°).

Monoridge. The intersection of a single roof slope and a vertical masonry face at the highest part of the roof.

Mortar. A mixture of sharp plaster sand, cement and inorganic pigment (optional) used for bedding tiles, ridges and fittings.

Pitch. The angle of inclination to the horizontal of the rafters, or of the surface on which tiles are laid.

Rafter. A supported structural member, usually timber, establishing the slope of the roof to which the battens, counter battens, boards or underlay are fixed.

Ridge. The horizontal junction between two roof slopes at the apex.

Soffit closure. A closure manufactured from rigid materials, fitted to the underside of the roof over-hang at eaves and verges.

Tilting batten. A batten that is used at eaves to support the tiles in the correct plane relative to the roof surface.

Truss. A structural system of timber or metal members that supports the roof covering and forms part of the structure to support a ceiling.

Underlay. A flexible undertile membrane fitted between the roof support structure and the battens.

Valley. The sloping intersection of two inclined roof surfaces that meet at a re-entrant angle (less than 180°).

Valley liner or gutter. A strip of impervious material that is used to exclude water at the sloping intersection of two interesting roof surfaces.

Verge. The edge of a roof surface at a gable.

Welt. The edge of the valley liner that is so shaped that the cleats can hook onto it.
Concrete Roof Tiles

Section 2 Technical Data
Section 2: Technical Data

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Structural data</td>
<td>30</td>
</tr>
<tr>
<td>2.2 Physical properties</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Underlays</td>
<td>32</td>
</tr>
<tr>
<td>2.4 Below minimum pitch specification</td>
<td>35</td>
</tr>
<tr>
<td>2.5 Condensation and ventilation</td>
<td>37</td>
</tr>
<tr>
<td>2.6 Roof pitch, wind forces and fixing recommendations</td>
<td>39</td>
</tr>
<tr>
<td>2.7 Estimating</td>
<td>47</td>
</tr>
<tr>
<td>2.8 Tender specification and bill of quantities</td>
<td>51</td>
</tr>
<tr>
<td>2.9 General notes</td>
<td>55</td>
</tr>
</tbody>
</table>
2.1 Structural Data

Table 2: Tiling data

<table>
<thead>
<tr>
<th></th>
<th>Flat Double Roman, Bold Double Roman, Bold Roll, Double Pan, Marseilles Profiles</th>
<th>Flat Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tile head lap (minimum)</td>
<td>100mm</td>
<td>100mm</td>
</tr>
<tr>
<td>Batten centres (maximum)</td>
<td>320mm</td>
<td>320mm</td>
</tr>
<tr>
<td>Length of battens per m² (average)</td>
<td>3,15m</td>
<td>3,15m</td>
</tr>
<tr>
<td>Tiles per m² (average)</td>
<td>10.42</td>
<td>9.66</td>
</tr>
<tr>
<td>Mass of tiles per m² (average)</td>
<td>48kg</td>
<td>45kg</td>
</tr>
</tbody>
</table>

Table 3: Rafter and batten data

<table>
<thead>
<tr>
<th>Nominal size of tiles</th>
<th>420mm x 330mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafter centres (maximum)</td>
<td>760mm with 38 x 38mm battens</td>
</tr>
<tr>
<td></td>
<td>760-900mm with 38 x 50mm battens fixed flat</td>
</tr>
<tr>
<td></td>
<td>900-1000mm with 38 x 50mm battens fixed on edge</td>
</tr>
</tbody>
</table>

Note: Spacing of rafters beyond 760mm centres may only be increased with engineer-designed trusses using 38x50mm battens of the correct grade. All structural timber to comply with SANS 1783-2, 1783-4 and 10149

Distance from top edge of first batten to outside edge of fascia board. Refer to Figure 1: 335-340mm depending on manufacturer’s requirements

Distance from top edge of first batten to outside of rafter where no fascia is used. Refer to Figure 2: 305mm

Distance from top edge to top batten to rafter apex. Refer to Figure 3: 25mm (or flat profile 25-50mm – refer to manufacturer)

Figure 1: Eaves batten position using fascia

Figure 2: Eaves batten position without fascia
Table 4: Physical properties

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional tolerances</td>
<td>Complies with SABS specifications</td>
</tr>
<tr>
<td>Transverse strength</td>
<td>Complies with SABS specifications (minimum average breaking load 4.0 N/mm width)</td>
</tr>
<tr>
<td>Impact strength (hail resistance)</td>
<td>Tiles can withstand an impact energy of 20 Joules (equivalent to a 45mm hail stone)</td>
</tr>
<tr>
<td>Permeability</td>
<td>Complies with SABS specifications</td>
</tr>
<tr>
<td>Thermal properties</td>
<td>Conductivity (k = m \cdot K)</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance (R = m^2K/W)</td>
</tr>
<tr>
<td>Frost</td>
<td>Unaffected by frost</td>
</tr>
<tr>
<td>Fire</td>
<td>Non flammable, non combustible</td>
</tr>
<tr>
<td>Conductivity (lightning)</td>
<td>Concrete roof tiles are poor electrical conductors</td>
</tr>
<tr>
<td>UV Radiation</td>
<td>Unaffected by UV radiation</td>
</tr>
<tr>
<td>Durability</td>
<td>Tile body: lifetime of building</td>
</tr>
<tr>
<td>TV Reception</td>
<td>Concrete roof tiles have virtually no effect on the television signal and permit the use of internal aerials in accordance with SANS 1061-1975</td>
</tr>
</tbody>
</table>
2.3. Underlays

In current building practice, the undertile membrane has become an integral part of any tiled roof. When properly laid, it will provide a highly effective barrier against the ingress of wind-driven rain and dust. The pressures exerted by wind forces will also be substantially reduced due to pressure equalisation, greatly reducing the risk of wind uplift.

The use of suitable undertile membrane which complies with the requirements of type E of SANS 952 – 1985 or holds an Agrément approval certificate, having a nominal thickness of 250 microns (0.25mm) is recommended at all pitches in all areas. **It is essential for roof pitches below 26° and above 45° and for all roof pitches in coastal and other exposed and windy areas.**

Undertile membrane must be fixed, prior to battening, horizontally over the rafters with a minimum overlap of 150mm and secured to the centre of the rafters with the minimum number of non-corrodible clout nails. The vertical laps must be secured over a rafter with a minimum overlap of 150mm.

At closed eaves, the undertile membrane must extend over the tilting batten and fascia board to allow drainage of water into the gutter. **It should be suitably supported by a rigid board behind the fascia board to prevent it from sagging and forming a water trap.**

Refer to Figure 4

Legend

01 – Roof tile
08 – Storm clip
16 – Batten
17 – Tilting batten
22 – Rafter
30 – Timber support
31 – Timber framing
32 – Fascia
37 – Eaves lining
43 – Undertile membrane
47 – Undertile membrane support
48 – Gutter
60 – Masonry wall
At open eaves, the undertile membrane should extend at least 20mm over the beam-filling on the exterior wall. Refer to Figure 5

Over hips, a strip of undertile membrane 600mm wide should be laid overlapping the undertile membrane of the main roof. Refer to Figure 6

In valleys, a similar strip of 600mm wide undertile membrane should be used and tucked under the underlay of the main roof. Refer to Figure 7

To avoid any damage to the undertile membrane, roofs should not be left exposed to UV radiation for any length of time.

Exposed undertile membrane can be damaged by excessive UV, strong wind, heavy rain and traffic on the roof.

In exposed areas it is recommended that the eaves and verges are closed. The undertile membrane must therefore be extended to the full overhang of the roof. Refer to Figure 4

If undertile membrane is damaged it is repaired by lifting the battens for the full width of the underlay and over a distance of two rafters. The replacement undertile membrane must be tucked under the top layer by at least 150mm and brought over the bottom layer by 150 mm and have a vertical overlap of 150mm on either side of the rafter. It should be secured to the top of the rafters with clout nails. Refer to Figures 8 and 9

Figure 6: Hip 600mm overlay strip

Figure 7: Valley 600mm underlay strip

Legend
21 – Truss
22 – Rafter
43 – Undertile membrane
45 – Underlay strip
46 – Overlay strip
In house designs where the ceiling boards or boarding are fixed to the top of the rafters, counter battens must be fixed on top of the ceiling boards directly above the rafters. The underlay should then be laid horizontally over the counter battens resting on top of the ceiling boards. The battens are fixed to the counter battens at the required spacing.

Figure 8: Undertile membrane over pitched roof illustrating laps

Figure 9: Undertile membrane over boarded roof illustrating laps
2.4 Below Minimum Pitch Specification

Introduction
The success of the members of the Concrete Roof Tile Division of the CMA has been achieved over many years by matching the requirements of both specifiers and the roofing industry with a range of concrete roof tiles that have proven durability, strength and performance in use. Concrete Roof Tiles, when correctly installed and maintained in accordance with SABS and CMA specifications and the requirements of SANS 10062 (1) should perform satisfactorily for the expected service life of the product.

Minimum Pitch and Lap Specifications
As part of the manufacturer’s specification, each roof tile design size has a minimum pitch which may be associated with a particular surface finish, rafter length, severity of exposure or headlap.

For further information related to the performance of particular tiles please refer to the manufacturer’s technical literature or contact the CMA.

Below Pitch Specification

Application. In certain instances the specifier has sometimes little option but to construct a roof below the minimum recommended pitch of the roof covering. These situations may include, for example, an extension to an existing property where the pitch is pre-determined by an upper window and minimum headroom requirements or a requirement to match the existing roof covering/structure.

A roof designed below the recommended minimum roof pitch should have a functional weatherproof sub-roof system capable of collecting any rainwater ingress and discharging it from the building. This sub-roof system should meet the recommendations for strength, water resistance, nail tear resistance, water vapour resistance (where required) and durability as required by SANS 10400 (2).

Specification. Although roof tile manufacturers are unable to provide assurance of the performance of their roofing products in this situation, and any decision to proceed is at the specifier’s own risk, the following specification aims to limit the risk of water ingress and might be considered suitable for smaller roof areas, such as extensions to existing domestic properties. To achieve this, the “groundwork” beneath the tiles must be improved; in effect becoming an “inclined flat roof”.

We would recommend that this specification is limited to a minimum pitch of 12.5° for interlocking concrete tiles.

The proposed work will be subject to the requirements of the National Building Regulations (SANS 10400). We would recommend approval is obtained in the first instance from the Local Building Control Department.

The Below Pitch Specification should include the following:

- Laying 15mm external quality plywood boarding, selected to comply with standard SANS 929 (3), over the rafters with joints supported by rafters or noggins between the rafters.
- Tape all plywood joints with 50mm wide strips of duct tape.
- Nail one layer of 1200mm wide roofing felt to SANS 92 (4) to the taped plywood. The number of joints should be minimised by using continuous lengths of felt from the roll, with each layer overlapping the layer below.
- Fully bond a second layer of roofing felt over the first layer using a torch-on bitumen and staggering all joints between the first and second layers.
- The felt is then overlaid with well fixed 38mm x 19mm timber counterbattens (to SANS 1783 (5)) at spacings to suit the rafters.
- Lay one layer of undertile membrane to SANS 952 (6) or Agrément approved over the counterbattens with a minimum horizontal lap of 200mm and a vertical lap of 200mm. This underlay must be allowed to sag between the battens and not be pulled tight.
Interlocking Tiles

Fix 38mm x 38mm (up to 760mm rafter centres) or 38mm x 50mm (760mm to 900mm rafter centres) tiling battens (to SANS1783) at maximum gauge necessary to provide a minimum 100mm headlap.

Battens to be preservative treated as per statutory requirements in accordance with SANS 10005 (7) in the prescribed areas.

The minimum fixing for all tiles is to nail every third course and the full roof overhang. See SANS 10062 for further details.

REFERENCES

1. SANS 10062 Fixing of interlocking roofing tiles.
2. SANS 10400 The Application of the National Building Regulations
3. SANS 929 Plywood and Composite Board
4. SANS 92 Bituminous roofing felt
5. SANS 1783 Sawn softwood timber
6. SANS 952 Polyolefin film for damp-proofing and waterproofing in buildings
7. SANS 10005 The preservative treatment of timber
2.5 Condensation and Ventilation

Condensation occurs when warm moisture-laden air meets a surface which has a temperature below the dewpoint of the ambient air.

At steep pitches and in areas where tiles can be laid on battens without underlay, condensation inside the roof is usually not troublesome. It is minimised by the natural air flow around the tiles and should it occur on the underside of the tiles, the water formed will normally run down onto the upper surface of the next row of tiles below without dripping inside the roof.

When the roof has an underlay, condensation occurs on the underside of the underlay. It should be prevented by the provision of adequate ventilation at eaves, ridges and gable walls where applicable.

a) Eaves to eaves ventilation

Research has shown that a variable, but significant, proportion of dwelling heat can accumulate in the roof space. It is therefore important to ensure that all entries from the dwelling to the roof space, for instance around access hatches and service pipes and wires, are tightly sealed. It should be noted that eaves to eaves roof ventilation may be insufficient for certain climatic conditions.

For example this ventilation only functions when there is external air movement directed at right angles to the eaves of the building. Consequently there is a danger of stagnant, warm, moist air being trapped in the apex of the roof. When no air movement occurs, such as on cold, frosty nights in winter, temperature levels drop dramatically, causing condensation to form on the underside of the underlay.
b) Eaves to ridge ventilation

The most effective way to eliminate any condensation problems is to supplement eaves to eaves ventilation with ridge ventilation. Refer to Figure 11.

This method has the benefit of ensuring an efficient ventilation flow in all climatic conditions by convection when no external air movement is present.

To all pitched roofs, with or without underlay, ventilated ridge tiles bring an effective solution to condensation problems by allowing a constant air flow in the roof space, preventing heat build-up. Refer to Figure 14.

Figure 12: Ventilated closed eaves

Figure 13: Open eaves with air brick

Figure 14: Ventilated ridge tile

Legend

01 – Roof tile
06 – Ventilated ridge
08 – Storm clip
11 – Mortar bed
16 – Batten
17 – Tilting batten
22 – Rafter
30 – Timber support
32 – Fascia
37 – Eaves lining
43 – Undertile membrane
47 – Undertile membrane support
48 – Gutter
62 – Air brick
2.6 Roof Pitch, Wind Forces and Fixing Recommendations

a) Roof pitch

The basic principle to be considered in roof design is that the roof pitch should be adequate to discharge rainwater in the shortest time possible.

An important factor which should be considered when choosing a pitch for the roof is the effect wind forces have on roofs.

These forces vary according to the speed and direction of the wind, the degree of exposure, the height and pitch of the roof. The uplift or suction created by wind forces is greater on lower roof pitches.

The minimum roof pitch and minimum head lap as specified in Table 2 must therefore not be reduced under any circumstances. It is preferable to raise the safety factor of the roof by adding a full course of tiles and increasing the tile head lap evenly on the rafter length.

While the tile head lap may be increased, on exposed sites, greater lap is not as effective as a steeper pitch.

In certain coastal areas where rain and wind conditions are known to be severe, it is good practice to increase the roof pitch by 5° above the minimum pitches in addition to providing adequate fixing methods. For roof pitches above 45°, and for vertical cladding, the roof tiles must be nailed and clipped.

b) Wind forces and fixing recommendations

To ensure the satisfactory performance of a roof, the following factors should be taken into consideration:

- Type of building
- Pitch of roof
- Terrain category
- Basic wind speed
- Height of roof from ground to ridge
- Length of the roof slope

There are three minimum fixing specifications, A, B and C, for concrete roof tiles which are suitable for all normal roofing situations.

Fixing Tables

The procedure for using these tables is as follows:

Select the building type
- Double pitch roof on single storey
- Double pitch roof on two storeys
- Double pitch roof on three storeys
- Monopitch roof

Select the appropriate roof pitch
- Determine the terrain category
- Determine the height from ground to ridge
- Determine the basic wind speed for the terrain from the map
- Read off specification A, B or C

In case of complex roof designs, exceptionally long rafter lengths (exceeding 8.0m) or buildings located in areas where extreme wind conditions prevail; more stringent fixing specifications may be required. For advice contact the manufacturer.

When considering the wind forces acting on the windward slope of pitched roofs, the pressure is dependent on the pitch. When the roof angle is less 30°, the windward slope can be subjected to severe suction or negative pressure. Roofs steeper than 35° generally

Figure 15: Wind forces on flat pitches

Figure 16: Wind forces on steep pitches
present sufficient obstruction to the wind for a positive pressure to be developed on their windward slopes. Even here, though, there is an area near the ridge where suction is developed.

The leeward slopes are always subject to suction, though this is not usually as strong as that produced near the windward edge. Refer to Figures 15 and 16

Under strong gusting wind conditions, the suction force on the roof tiles may be in excess of the mass of the tiles, thus requiring them to be securely fixed to prevent them from being lifted from the building. Wind tunnel tests have also shown the benefits provided by the roofing underlay in resisting upward wind loads.

No reliance should be placed on the shear or tensile strength of mortar to hold monoridge tiles and ridge tiles on steep or vertical hips, or at any place where there is a risk of differential movement. This means that mechanical fixing is necessary to prevent them from being dislodged.

Within the general roof area the tensile strength and pull-out resistance of nails become important. At lower pitches tile clips provide resistance to the applied lifting force more successfully than nails which, due to their closeness to the pivot line where the nib touches the batten, cannot resist the uplift force created at the tail. Refer to Figure 17. At steeper pitches it is important to prevent the tiles from being dislodged and from rattling under wind gusting.

Storm damage due to excessive wind gusting occurs in most instances at eaves, verges and under ridges.

It is therefore recommended that, in semi-exposed and exposed roof situation, the mechanical fixing in these particular areas of the roof be improved. Rake verge tiles should be used at abut ends to secure the verges.

Storm damage due to excessive wind gusting seldom occurs at hips and valleys and additional mechanical fixing other than specified is not necessary. At valleys it is more important to ensure the correct width for the valley liner and good installation to prevent rain water from overflow in gin to the roof space.

c) Additional fixing

In severe or adverse wind load situation, special fixing specifications are required.

These situations are:

- complex roof designs in semi-exposed or exposed areas
- steep pitches, vertical tiling and monopitch roofs (shopping malls, schools, etc.)

The special fixing specifications may include:

- Use of serrated nails or screws instead of normal fixing nails.
- Double fixing (in addition to normal fixing) in the pan of the tile. Additional fixing holes in tiles and fittings to be drilled on site as required.

d) Exceptional rafter lengths

On very long rafter lengths the tile head lap must be increased as required, especially as the lower part of the roof sheds a large volume of rain water.

![Figure 17: Clip fixing / Nail fixing](image_url)
e) Terrain categories

Terrain category 1
Exposed open terrain with few or no obstructions and in which the average height of an object surrounding the structure is less than 1,5m in height. This category includes open sea coasts and flat, treeless plains with little vegetation other than grass.

Terrain category 2
Open terrain with well scattered obstructions having heights generally between 1,5m and 10m. This category includes most parklands and undeveloped sparsely built-up outskirts of towns and suburbs.

Terrain category 3
Terrain with numerous closely spaced obstructions the size of domestic houses. This category includes well-wooded areas and suburbs, town and industrial areas.

Terrain category 4
Terrain with numerous large, high, closely spaced obstructions. This category includes large city centres.

f) Regional basic design wind speed (as defined in SANS 10160-1989)
The values given here are based on a statistical analysis of data gathered by the Weather Bureau of the Department of Transport over many years at a number of stations throughout the Republic. To obtain wind speeds for intermediate locations, either use linear interpolation or use the higher value isopleth.

Where local wind speed records of sufficient duration and reliability are available to the designer of a building in a given locality, these may be used to determine the regional basic wind speed instead of the value derived from this map, provided that lower wind speeds are not adopted without the approval of the local authority.

In local areas where there is knowledge of the occurrence of high wind gusts and severe lifting forces (i.e. certain coastal areas, highveld storm areas, wind funnelling or other effects) interpolation must be done to the highest value.
g) Minimum fixing specifications

Fixing specification A
(Unexposed roof situations)
Mechanically fix two courses of tiles at eaves and verges (or the full overhang, whichever is greater) and at ridges, and one adjacent full tile at valleys, hips and abutments. Cut tiles at valleys, hips and abutments to be secured by nailing or wiring, as required.

Roof pitches from 17.5° up to 26°
Undertile membrane mandatory.

Roof pitches from 26° up to 45°
Undertile membrane recommended.

Roof pitches from 45° up to 55°
Each tile to be nailed or clipped
Undertile membrane recommended

Roof pitches from 55° to 90°
Each tile to be nailed and clipped
Undertile membrane mandatory

Fixing specification B (Semi-exposed roof situations)
Mechanically fix a band of tiles (x) equal to a fifth of the number of courses on the rafter length at eaves and verges or the full overhang, whichever is the greater; and at ridges and abutments; and one adjacent full tile at hips and valleys, and every third tile on the rest of the roof. Cut tiles at hips, valleys and abutments to be secured by nailing or wiring as required.

Example: 15 courses on the rafter:
X = 3 courses
Soffits should be closed at eaves and verge overhangs.

Roof pitches from 17.5° up to 26°
Undertile membrane mandatory

Roof pitches from 26° up to 45°
Undertile membrane recommended

Roof pitches from 45° to 90°
Each tile to be nailed and clipped
Undertile membrane mandatory

Fixing specification C (Exposed roof situations and roofs in coastal areas*)
Each tile fixed
Soffits must be closed at eaves and verge overhangs.

Roof pitches from 17.5° up to 45°
Each tile to be nailed or clipped
Undertile membrane mandatory

Roof pitches from 45° to 90°
Each tile to be nailed and clipped
Undertile membrane mandatory

* Generally, the area within 5km from the coast-line unless otherwise defined locally.
Table 5: Minimum fixing recommendations for roofs on single storey buildings

<table>
<thead>
<tr>
<th>Category</th>
<th>Terrain</th>
<th>Category</th>
<th>Terrain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>h</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>

- A = Perimeter only
- B = Perimeter and local roof area
- C = Each tile fixed
- h = Height from ground to ridge, m
- w = Basic wind speed on terrain, m/s

Shaded areas: Undertile membrane essential
Unshaded areas: Undertile membrane recommended
Table 6: Minimum fixing recommendations for roofs on two storey buildings

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>h</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>h</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

A = Perimeter only
B = Perimeter and local roof area
C = Each tile fixed
h = Height from ground to ridge, m
w = Basic wind speed on terrain, m/s

Unshaded areas: Undertile membrane essential

Shaded areas: Undertile membrane recommended
Table 7: Minimum fixing recommendations for roofs on three storey buildings

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>Pitch Range</th>
<th>h</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.5° ≤ Pitch < 22.5°</td>
<td></td>
<td>10</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>22.5° ≤ Pitch < 26°</td>
<td></td>
<td>10</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>26° ≤ Pitch < 30°</td>
<td></td>
<td>10</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>30° ≤ Pitch < 35°</td>
<td></td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>35° ≤ Pitch < 40°</td>
<td></td>
<td>10</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>40° ≤ Pitch < 45°</td>
<td></td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>B</td>
</tr>
</tbody>
</table>

A = Perimeter only
B = Perimeter and local roof area
C = Each tile fixed
h = Height from ground to ridge, m
w = Basic wind speed on terrain, m/s

Unshaded areas: Undertile membrane essential
Shaded areas: Undertile membrane recommended
Table 8: Minimum fixing recommendations for monopitch roofs

17.5° ≤ Pitch < 22.5°

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

22.5° ≤ Pitch < 26°

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

26° ≤ Pitch < 30°

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

30° ≤ Pitch < 35°

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

35° ≤ Pitch < 40°

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

40° ≤ Pitch < 45°

<table>
<thead>
<tr>
<th>Terrain Category</th>
<th>38</th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
<th>48</th>
<th>50</th>
<th>52</th>
<th>54</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

A = Perimeter only
B = Perimeter and local roof area
C = Each tile fixed
h = Height from ground to ridge, m
w = Basic wind speed on terrain, m/s

Unshaded areas: Undertile membrane essential
Shaded areas: Undertile membrane recommended
2.7 Estimating

This guide has been compiled to estimate concrete roof tile quantities. To use this guide one should acquaint oneself with the roofing terminology used in the concrete roof tile industry. Reference should also be made to the definitions of building terms and of roof forms which can be found in Section 1.

Eaves length. The total length of the roof at eaves, including verge overhangs.

Roof span. The projected span of the roof on the plan, including eaves overhangs.

Rafter span. The projected span of a rafter length, equal to half the roof span, for a symmetrical double pitched roof.

Rafter length. The distance measured on top of the rafter, between the rafter apex and the end of the rafter at eaves, or the outside edge of the fascia board, if any.

Roof plan area. The flat surface area on the plan calculated from the roof line.

Roof area to slope. The actual area to be tiled.

Roof pitch. The angle between the rafter and the horizontal. Rafter pitch = roof pitch.

Roof constant multipliers. Constant factors used in roof calculations. Refer to Table 9

The head lap. The distance by which the tiles overlap one another.

Roofline on the plan. The projected line of the roof perimeter on the plan, including verge eaves and gutter overhang.

Gutter overhang. The distance by which the tiles overhang the fascia board over the gutter. For estimating purposes (standard 100mm gutter) this distance is assumed at: 50mm on the plan, 60mm on the slope.

Tile pitch. The angle between the tile when laid on the roof and the horizontal. The tile pitch is generally 5° lower than the roof pitch.

Batten centres. The distance by which the battens are spaced, measured from top of batten to top of batten or from centre to centre.

Ridge length. The horizontal length of the roof apex.

Hip and Valley length. The length of a hip or valley measured from eaves to apex.

Note: the length of the hip or valley cannot be measured off the plan and must always be calculated.
Calculating roof tile quantities

The two methods of calculating roof tile quantities are:

a) Eaves length/rafter length method
b) Roof area method

To calculate the number of tiles required it is necessary to have working drawings showing lengths of eaves, rafters and roof pitch. Roofs having the same eaves overhang and rafter length and roof pitch will have the same roof area regardless of whether the roof has hipped or gabled ends. If rafter lengths cannot be taken off the drawings they can be calculated as follows:

To calculate the rafter length at a given pitch, multiply the rafter span (including the eaves overhang by the appropriate rafter constant. Refer to Table 9

Rafter length = rafter span x rafter constant.

To calculate the valley or hip length multiply the rafter span by the appropriate valley/hip constant. Valley/hip rafter length = rafter span x valley/hip constant.

Using Table 10 read off the number of tiles required along the length of the eaves. Round up to the nearest full tile.

Multiplying the number of tiles along the eaves by the number of courses on the rafter length for each roof area. Add the totals together.

Add 2% of total for wastage.

b) Roof area method

Reduce the roof plan to basic areas.

Calculate each roof area on plan by multiplying eaves length of each roof area by the roof span.

Total area of roof to be tiled = sum of various areas on plan x constant for the appropriate roof pitch. Refer to Table 9

If the roof has different pitches for the various areas, then each area should be calculated separately.

As this roof area method is only approximate add 5% for wastage.

Valleys and hips: extra tiles for cutting.

Length of hips and valleys = number of hips/valleys x rafter span x hip/valley constant. Refer to Table 9

Extra tiles for hips = length of hips x 3.

Extra tiles for valleys = length of valleys x 4.

Add 2% for wastage. Round up to nearest 10.

Ridge tile quantity for ridges and hips

Total ridge/hip tiles required = length of ridge/hip x number of ridge/ hip tiles/m.

Refer to manufacturer if in doubt

Add one ridge tile per length of ridge. Add one ridge tile per hip for mitring at ridge/hip junction.

Add 5% for wastage.

Verge. For each verge allow one rake verge tile for each course of tiling and one extra verge tile for mitring at the apex.

Add 5% for wastage.
Table 9: Roof rafter constant multipliers

<table>
<thead>
<tr>
<th>Roof pitch</th>
<th>Rafter</th>
<th>Valley/Hip</th>
<th>Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5°</td>
<td>1.049</td>
<td>1.450</td>
<td>1.971</td>
</tr>
<tr>
<td>18°</td>
<td>1.051</td>
<td>1.451</td>
<td>1.200</td>
</tr>
<tr>
<td>19°</td>
<td>1.058</td>
<td>1.456</td>
<td>1.205</td>
</tr>
<tr>
<td>20°</td>
<td>1.064</td>
<td>1.460</td>
<td>1.211</td>
</tr>
<tr>
<td>21°</td>
<td>1.071</td>
<td>1.465</td>
<td>1.217</td>
</tr>
<tr>
<td>22°</td>
<td>1.079</td>
<td>1.471</td>
<td>1.224</td>
</tr>
<tr>
<td>22.5°</td>
<td>1.082</td>
<td>1.473</td>
<td>1.227</td>
</tr>
<tr>
<td>23°</td>
<td>1.086</td>
<td>1.476</td>
<td>1.230</td>
</tr>
<tr>
<td>24°</td>
<td>1.095</td>
<td>1.482</td>
<td>1.238</td>
</tr>
<tr>
<td>25°</td>
<td>1.103</td>
<td>1.488</td>
<td>1.246</td>
</tr>
<tr>
<td>26°</td>
<td>1.113</td>
<td>1.496</td>
<td>1.254</td>
</tr>
<tr>
<td>27°</td>
<td>1.122</td>
<td>1.503</td>
<td>1.263</td>
</tr>
<tr>
<td>27.5°</td>
<td>1.127</td>
<td>1.506</td>
<td>1.267</td>
</tr>
<tr>
<td>28°</td>
<td>1.133</td>
<td>1.511</td>
<td>1.272</td>
</tr>
<tr>
<td>29°</td>
<td>1.143</td>
<td>1.519</td>
<td>1.281</td>
</tr>
<tr>
<td>30°</td>
<td>1.155</td>
<td>1.528</td>
<td>1.291</td>
</tr>
<tr>
<td>31°</td>
<td>1.167</td>
<td>1.537</td>
<td>1.302</td>
</tr>
<tr>
<td>32°</td>
<td>1.179</td>
<td>1.546</td>
<td>1.313</td>
</tr>
<tr>
<td>32.5°</td>
<td>1.186</td>
<td>1.551</td>
<td>1.319</td>
</tr>
<tr>
<td>33°</td>
<td>1.192</td>
<td>1.556</td>
<td>1.325</td>
</tr>
<tr>
<td>34°</td>
<td>1.206</td>
<td>1.567</td>
<td>1.338</td>
</tr>
<tr>
<td>35°</td>
<td>1.221</td>
<td>1.578</td>
<td>1.351</td>
</tr>
<tr>
<td>36°</td>
<td>1.236</td>
<td>1.590</td>
<td>1.365</td>
</tr>
<tr>
<td>37°</td>
<td>1.252</td>
<td>1.602</td>
<td>1.379</td>
</tr>
<tr>
<td>37.5°</td>
<td>1.260</td>
<td>1.609</td>
<td>1.387</td>
</tr>
<tr>
<td>38°</td>
<td>1.269</td>
<td>1.616</td>
<td>1.394</td>
</tr>
<tr>
<td>39°</td>
<td>1.287</td>
<td>1.630</td>
<td>1.411</td>
</tr>
<tr>
<td>40°</td>
<td>1.305</td>
<td>1.644</td>
<td>1.428</td>
</tr>
<tr>
<td>41°</td>
<td>1.325</td>
<td>1.660</td>
<td>1.445</td>
</tr>
<tr>
<td>42°</td>
<td>1.346</td>
<td>1.677</td>
<td>1.464</td>
</tr>
<tr>
<td>42.5°</td>
<td>1.356</td>
<td>1.685</td>
<td>1.474</td>
</tr>
<tr>
<td>43°</td>
<td>1.367</td>
<td>1.695</td>
<td>1.484</td>
</tr>
<tr>
<td>44°</td>
<td>1.390</td>
<td>1.712</td>
<td>1.506</td>
</tr>
<tr>
<td>45°</td>
<td>1.414</td>
<td>1.732</td>
<td>1.528</td>
</tr>
<tr>
<td>46°</td>
<td>1.440</td>
<td>1.753</td>
<td>1.552</td>
</tr>
<tr>
<td>47°</td>
<td>1.466</td>
<td>1.775</td>
<td>1.567</td>
</tr>
<tr>
<td>47.5°</td>
<td>1.480</td>
<td>1.786</td>
<td>1.589</td>
</tr>
<tr>
<td>48°</td>
<td>1.494</td>
<td>1.798</td>
<td>1.603</td>
</tr>
<tr>
<td>49°</td>
<td>1.524</td>
<td>1.823</td>
<td>1.630</td>
</tr>
<tr>
<td>50°</td>
<td>1.556</td>
<td>1.850</td>
<td>1.660</td>
</tr>
<tr>
<td>51°</td>
<td>1.589</td>
<td>1.877</td>
<td>1.69</td>
</tr>
<tr>
<td>52°</td>
<td>1.624</td>
<td>1.907</td>
<td>1.724</td>
</tr>
<tr>
<td>52.5°</td>
<td>1.643</td>
<td>1.923</td>
<td>1.741</td>
</tr>
<tr>
<td>53°</td>
<td>1.662</td>
<td>1.940</td>
<td>1.759</td>
</tr>
<tr>
<td>54°</td>
<td>1.701</td>
<td>1.973</td>
<td>1.797</td>
</tr>
<tr>
<td>55°</td>
<td>1.743</td>
<td>1.009</td>
<td>1.837</td>
</tr>
<tr>
<td>56°</td>
<td>1.788</td>
<td>2.049</td>
<td>1.880</td>
</tr>
<tr>
<td>57°</td>
<td>1.836</td>
<td>2.091</td>
<td>1.925</td>
</tr>
<tr>
<td>57.5°</td>
<td>1.861</td>
<td>2.113</td>
<td>1.949</td>
</tr>
<tr>
<td>58°</td>
<td>1.887</td>
<td>2.136</td>
<td>1.973</td>
</tr>
<tr>
<td>59°</td>
<td>1.942</td>
<td>2.184</td>
<td>2.026</td>
</tr>
<tr>
<td>60°</td>
<td>2.000</td>
<td>2.236</td>
<td>2.082</td>
</tr>
</tbody>
</table>
Table 10: Tile cover – rafter / eaves

<table>
<thead>
<tr>
<th>Number of tiles</th>
<th>Nominal size of tiles</th>
<th>Rafter</th>
<th>Eaves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>420 x 330mm</td>
<td>17.5° – 25°</td>
<td>26° and above</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100mm head lap</td>
<td>75mm head lap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>320mm batten centres</td>
<td>345mm batten centres</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>1</td>
<td>0.360</td>
<td>0.360</td>
<td>0.332</td>
</tr>
<tr>
<td>2</td>
<td>0.680</td>
<td>0.705</td>
<td>0.633</td>
</tr>
<tr>
<td>3</td>
<td>1.000</td>
<td>1.050</td>
<td>0.934</td>
</tr>
<tr>
<td>4</td>
<td>1.320</td>
<td>1.395</td>
<td>1.235</td>
</tr>
<tr>
<td>5</td>
<td>1.640</td>
<td>1.740</td>
<td>1.536</td>
</tr>
<tr>
<td>6</td>
<td>1.960</td>
<td>2.085</td>
<td>1.837</td>
</tr>
<tr>
<td>7</td>
<td>2.280</td>
<td>2.430</td>
<td>2.138</td>
</tr>
<tr>
<td>8</td>
<td>2.600</td>
<td>2.775</td>
<td>2.439</td>
</tr>
<tr>
<td>9</td>
<td>2.920</td>
<td>3.120</td>
<td>2.740</td>
</tr>
<tr>
<td>10</td>
<td>3.240</td>
<td>3.485</td>
<td>3.041</td>
</tr>
<tr>
<td>11</td>
<td>3.560</td>
<td>3.810</td>
<td>3.342</td>
</tr>
<tr>
<td>12</td>
<td>3.880</td>
<td>4.155</td>
<td>3.643</td>
</tr>
<tr>
<td>13</td>
<td>4.200</td>
<td>4.500</td>
<td>3.944</td>
</tr>
<tr>
<td>14</td>
<td>4.520</td>
<td>4.845</td>
<td>4.245</td>
</tr>
<tr>
<td>15</td>
<td>4.840</td>
<td>5.190</td>
<td>4.546</td>
</tr>
<tr>
<td>16</td>
<td>5.160</td>
<td>5.535</td>
<td>4.847</td>
</tr>
<tr>
<td>17</td>
<td>5.480</td>
<td>5.880</td>
<td>5.148</td>
</tr>
<tr>
<td>18</td>
<td>5.800</td>
<td>6.225</td>
<td>5.449</td>
</tr>
<tr>
<td>19</td>
<td>6.120</td>
<td>6.570</td>
<td>5.750</td>
</tr>
<tr>
<td>20</td>
<td>6.440</td>
<td>6.915</td>
<td>6.051</td>
</tr>
<tr>
<td>21</td>
<td>6.760</td>
<td>7.260</td>
<td>6.352</td>
</tr>
<tr>
<td>22</td>
<td>7.080</td>
<td>7.605</td>
<td>6.653</td>
</tr>
<tr>
<td>23</td>
<td>7.400</td>
<td>7.950</td>
<td>6.954</td>
</tr>
<tr>
<td>24</td>
<td>7.720</td>
<td>8.295</td>
<td>7.255</td>
</tr>
<tr>
<td>25</td>
<td>8.040</td>
<td>8.640</td>
<td>7.556</td>
</tr>
<tr>
<td>26</td>
<td>8.360</td>
<td>8.985</td>
<td>7.857</td>
</tr>
<tr>
<td>27</td>
<td>8.680</td>
<td>9.330</td>
<td>8.158</td>
</tr>
<tr>
<td>28</td>
<td>9.000</td>
<td>9.675</td>
<td>8.459</td>
</tr>
<tr>
<td>29</td>
<td>9.320</td>
<td>10.020</td>
<td>8.760</td>
</tr>
<tr>
<td>31</td>
<td>9.960</td>
<td>10.710</td>
<td>9.362</td>
</tr>
<tr>
<td>32</td>
<td>10.280</td>
<td>11.055</td>
<td>9.663</td>
</tr>
<tr>
<td>33</td>
<td>10.600</td>
<td>11.400</td>
<td>9.964</td>
</tr>
<tr>
<td>34</td>
<td>10.920</td>
<td>11.745</td>
<td>10.265</td>
</tr>
<tr>
<td>35</td>
<td>11.240</td>
<td>12.090</td>
<td>10.566</td>
</tr>
<tr>
<td>36</td>
<td>11.560</td>
<td>12.435</td>
<td>10.867</td>
</tr>
<tr>
<td>37</td>
<td>11.880</td>
<td>12.780</td>
<td>11.168</td>
</tr>
<tr>
<td>38</td>
<td>12.200</td>
<td>13.125</td>
<td>11.469</td>
</tr>
<tr>
<td>39</td>
<td>12.520</td>
<td>13.470</td>
<td>11.770</td>
</tr>
<tr>
<td>40</td>
<td>12.840</td>
<td>13.815</td>
<td>12.071</td>
</tr>
</tbody>
</table>
2.8 Tender Specification and Bill of Quantities

a) Preamble – roof measuring
Standard system for roof measuring of concrete roof tiles.

General
Roof covering is measured nett and subject to remeasurement on completion of work. Wastage and breakage must always be added.

Tiling
Roof tiling with concrete roof tiles shall be given in square metres and must be separated into three categories.

a) Flat slope – Not exceeding 25° from the horizontal
b) Steep slope – From 26° to 55°
c) Vertical – Exceeding 55°

Reference must be made in the bill of quantities to the height of the building, the number of storeys, the roof pitch and the batten centres (tile head lap). For roof pitches from 17,5° to 25° tiles must be laid with a minimum head lap of 100mm (maximum batten centres 320mm) with underlay mandatory. For roof pitches from 26° upwards tiles must be laid with a minimum head lap of 75mm (maximum batten centres 345mm).

Note: For flat profile tiles contact the manufacturer for minimum roof pitch, overlaps and batten centres.

Mechanical fixing of tiles shall be done strictly in accordance with the manufacturer’s recommendations.

Coverings to dormers, turrets and the like shall be made separately. No deductions shall be made for openings, vents etc not exceeding 1m².

Raking and Cutting
Raking, cutting and waste at abutments, parapet walls, verges, skew eaves etc where not otherwise provided for shall be given in linear metres. Flashing material measured elsewhere.

Valleys
Close-cut and open-cut valleys shall be given in linear metres and the description shall include cutting of tiles and waste to both sides. Wiring of cut tiles, as in the case of an open valley, shall be included in the description. Valley liner measured elsewhere.

Hips
Close-cut and mitred hips shall be given in linear metres. The description shall include cutting of tiles and waste to both sides, hip tiles, pigment bedding and pointing. Sand, cement and DPC to be provided by the main contractor, unless specified otherwise in the Bill of Quantities.

Ridges
Ridges shall be given in linear metres. The description shall include ridge tiles, pigment bedding and pointing. Sand, cement and DPC to be provided by the main contractor, unless specified otherwise in the Bill of Quantities.

Verges
Verge installations formed with verge tiles shall be given in linear meters. The description shall include verge tiles, pigment bedding and pointing. Sand, cement and DPC to be provided by the main contractor, unless specified otherwise in the Bill of Quantities.

Purpose-made Tiles
Purpose made tiles to ends, ridges and verge tiles, ventilated ridge tiles etc. shall be given in number. The description shall include all fixing materials.

b) Preamble – roof covering
Standard system for fixing of concrete roof tiles

General
The following recommendations on installation shall be regarded as normal practice. Under certain circumstances material specifications may vary to suit local conditions of use.

Undertile Membrane
Prior to battening, an SABS or Agrément approved undertile membrane shall be laid horizontally over the rafters, with minimum overlaps of 150mm and secured with clout nails to the rafter centres.

The undertile membrane must allow drainage
of water and should extend over the tilting batten or fascia board into the gutter. Water traps behind the fascia board must be avoided. Alternatively, in open eaves, the undertile membrane should extend approximately 20mm over the beam-filling on the exterior wall.

A strip of undertile membrane not less than 600mm wide shall be laid over hips overlapping the undertile membrane of the main roof. At valleys a similar strip not less than 600mm wide shall be laid under the undertile membrane of the main roof.

Battens

All timber used for battening shall be graded SA pine complying with SANS 653-1980 Standard specifica-
tions for softwood brandering and battens.

The minimum batten sizes are:

- 38 x 38mm for rafter centres up to 760mm
- 38 x 50mm fixed flat for rafter centres from 760mm to 900mm
- 38 x 50mm fixed on edge for rafter centres from 900mm to 1 000mm

The rafter centres can only be increased above 760mm with engineer designed trusses. All structural timber to comply with SANS 1783-4: 2004.

Battens shall be of sufficient length to be supported at each end and intermediately by a total of a least three rafters, trusses or walls. Counterbattens must be installed at valleys and if necessary, at hips to support the cut ends of the battens.

The verge counterbatten shall in all instances be 38 x 50mm fitted on edge to the ends of the battens at the able ends.

At vertical hips and at pitches above 45° additional battens must be fixed on top of the hip rafter to form a live tree of sufficient height to permit mechanical fixing of the hip tiles.

At the ridge the top batten must be placed at a distance not exceeding 25mm from the rafter apex to ensure sufficient overlap of the ridge tiles over the top course of tiling. For slate tiles refer to the manufacturer.

The first batten at the eaves must be so positioned as to allow sufficient overhang of the tiles over the fascia board or tilting batten to ensure that water discharges into the centre of the gutter.

Battening on boarded roofs with underlay should be supported by counterbattens to increase ventilation under the tiles and to allow free drainage of any water that may reach the undertile membrane.

Minimum head laps of 100mm must be maintained at roof pitches from 17.5° up to 26° and minimum head laps of 75mm at roof pitches from 26° upwards. Head laps can be increased to suit the rafter length in order to ensure that the last course of tiles under the ridge is in all instances a full tile.

Concrete Roof Tiles

Large interlocking concrete roof tiles of nominal size 420x330mm shall comply with the requirements of SANS 542-2004 and shall be of profile, colour and finish as described agreed between the specifier and the supplier.

Tiling

All tiling must be fixed in accordance with SANS 10062-2003 and comply with the manufacturer’s recommendations. All roof overhangs must be mechanically fixed with non-corrodible clout nails or clips and the main body of the roof must be fixed in accordance with the manufacturer’s specification applicable to locality and roof pitch. Nails or clips must penetrate battens to a minimum depth of 25mm.

Tiles (except flat tiles which are laid broken bond) are to be laid in straight bond with the vertical joints forming a straight line up the slope of the roof.

At all abutments where tiling meets walls or chimneys, and adequate flashing material must be used to weather proof the junction. All tiling must be cut close to the abutment.

Verges

Unless otherwise specified, verges shall be formed with purpose made verge tiles of similar colour and finish to those of the main roof tiles and must be fixed strictly in accordance with he manufacturer’s recommendations.
Ridges

Ridges shall be covered with ridge tiles of similar colour and finish to those of the main tiles and shall be edge-bedded onto the last course of tiles in tinted 3:1 sand/cement mortar, strictly in accordance with the manufacturer’s recommendations. All ridge tiles shall overlap the last course of tiling by a minimum of 75mm and the exposed mortar must be neatly pointed.

A strip of approved DPC sheeting 150mm wide should be placed lengthwise under the ridge tiles, overlapping the top course of tiling on each side by 25mm. Lapped ends must be supported underneath and the overlap should not be less than 150mm.

The end ridge tiles at gable ends should be solid bedded with mortar inset with pieces of tiles and neatly pointed at fair ends.

All ridge tiles shall be neatly cut and mitred at intersections with hips, intersecting ridges etc.

Monoridges are to be formed with purpose made monoridge tiles edge-bedded onto the top course of tiling as described for ridge tiles strictly in accordance with the manufacturer’s recommendations.

Hips

Hips shall be covered with ridge tiles/hip tiles of similar colour and finish to those of the main roof tiles. The tiles should be cut closely to the rake of the hip, and the hip tiles shall be edge-bedded onto the tiles as described for ridge tiles.

The first hip tile should be shaped at the foot to the line of tiling at the eaves and the fair end filled with mortar inset with pieces of tile and neatly pointed. Alternatively hip starters should be used.

For vertical hips and at steep pitches above 45°, hip irons should be used and fixed to the hip tree with two screws or nails to support the first hip tile.

All other hip tiles must be nailed to the hip tree and bedded as detailed for hips and ridges.

Valleys

A non-corrodible valley flashing, at least 300mm wide, preferably with a preformed centre gutter, must be installed on the roof before tiling.

For open valleys the adjacent tiling must be neatly cut on both sides to form an open channel of at least 100mm wide. The cut tiles must be well fixed to the battens.

For closed valleys the adjacent tiles must be neatly cut on both sides to form a close fit and a straight line. The tiles must be holed and secured by nailing. If the cut tiles are very small and cannot be nailed they must be secured to the battens by means of bailing wire.

Mortar

All bedding and pointing mortar should consist of three parts sharp sand (plaster sand) and one part ordinary Portland cement suitably tinted with inorganic pigment to blend in with the tiling.

Bedding and pointing should be done in one operation and struck off at right angles to the roof plane to give a smooth finish. All ridges to be soaked in water before bedding to achieve improved bonding to mortar.
Table 11: Typical tender specifications for concrete roof tiles

<table>
<thead>
<tr>
<th>Item No</th>
<th>Roof coverings</th>
<th>Quantity</th>
<th>Rate (R)</th>
<th>Amount (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Refer to Preamble – roof covering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete roof tiles (state name of manufacturer and profile) through colour interlocking roof tiles, size 420 x 330mm, manufactured in accordance with SANS 542, of approved colour with matching fittings and accessories. All tiling to be done in accordance with SANS 10062 and to comply with the manufacturer’s recommendations. Tiling at 25° pitch with minimum head tap of 100mm and maximum batten centres of 320mm to single storey. All perimeter tiles must be mechanically fixed and the main body of the roof must be fixed in accordance with the manufacturer’s recommendations applicable to the locality and roof pitch.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tiling to be (state name and profile) tiles laid straight bond to steep slope of 25°, fixed to battens at 320mm batten centres (maximum) (battens and underlay elsewhere measured) *Note: Broken bond for flat tiles</td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tiling to be (state name and profile) tiles laid straight bond to flat slope of 35°, fixed to battens at 345mm batten centres (maximum) (battens and underlay elsewhere measured) *Note: Broken bond for flat tiles</td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Verges to be formed with VERGE TILES fixed in accordance with the manufacturer’s recommendations</td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Extra over verge tiling to form mitred intersection of ridge and two verge tiles</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ridges to be covered with RIDGE TILES edge-bedded and pointed in tinted 3:1 sand/cement mortar over DPC 150mm wide</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Extra over ridge tiles for solid bedding and pointing of fair ends at gables</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Extra over ridge tiles to form mitred intersection of two ridges</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Monoridge to be covered with MONORIDGE TILES edge-bedded and pointed in 3:1 tinted sand/cement mortar over DPC 150mm wide</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hips to be covered with RIDGE / HIP TILES edge-bedded and pointed in 3:1 tinted sand/cement mortar, over DPC 150mm wide, including cutting and waste to both sides</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Extra over hip tiles to install HIP STARTER</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Extra over hip tiles for shaping first ridge tiles at eaves, solid bedding and pointing of fair ends</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Extra over hip tiles to form mitred intersection of ridge and two hips</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Extra over hip tiles to form mitred intersection of four hips</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Close Cut Valley with adjacent tiles neatly machine cut on both sides to form a neat butt joint over the valley centre. Valley liner measured elsewhere</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Open Cut Valley with adjacent tiles carborundrum cut on both sides to form an open channel of at least 100mm. Valley liner measured elsewhere</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Raking, Cutting and Waste at abutments, parapets and verges</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ventilated Ridge Terminals</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total to Summary: R
2.9 General Notes

Properly erected concrete roof tiles do not require any maintenance work or surface treatment to improve their durability or functional properties.

For aesthetic reasons however, it may become necessary to carry out maintenance work where roofs have become unsightly due to a number of factors:

a) Efflorescence

Efflorescence often referred to as “lime bloom”, is a natural phenomenon found in cementitious products such as concrete roof tiles. The cause lies in the chemical composition of the cement. When water added to cement a series of chemical reactions take place resulting in the setting and hardening. One product of these reactions “lime” in the form of calcium hydroxide which is slightly soluble in water and under certain conditions can migrate via capillaries in the concrete tile to the surface. There it reacts with the carbon dioxide from the atmosphere forming a white powder deposit of calcium carbonate crystals which is referred to as efflorescence.

Whilst the white deposit may appear unsightly, it is a temporary effect and should not be treated. With time and the natural process of weathering it will disappear restoring the true colour of the tile. This process can take three or four normal rainy seasons. This condition is purely superficial and does not affect the durability, the strength or the original colour of the tile.

At present there is no viable method during the production process of preventing efflorescence.

b) Fungal growth on roofs

Small deposits of fungal lichen or moss on a fairly new roof can be removed by using water and a hard bristle brush.

Where lichen has been prevalent for a number of years. It should be treated with approximately 2% copper sulphate solution to kill the growth. The roof should then be washed with a high-pressure water spray and a hard bristle brush.

If the roof cannot be restored to a uniform colour; it may require repainting. This can be carried out by using an approved pure acrylic paint which can be applied either by brush, roller or with spraying equipment.

c) Painting of tiled roofs

Where it is required to change the colour of the roof for aesthetic reasons, the roof should first be thoroughly cleaned. All dirt and dust should be washed down with water before a coat of approved pure acrylic paint is applied.

d) Health and safety instruction

(Silicosis warning)

Many building products such as roof tiles are manufactured using natural raw materials. These raw materials contain a proportion of crystalline silica.

Powered mechanical processing such as cutting or drilling of the products will release some quantities of respirable silica dust.

Where exposure to this dust is high or prolonged over time, it can lead to lung disease (silicosis) and an increased risk of lung cancer.

The following control measures are required:

- An approved P3/FFP3 particulate respirator must be used during all cutting and drilling process.
- In addition, engineering controls such as wet cutting or dust extraction devices should be applied.
Concrete Roofs Tiles

Section 3

Tiling Procedure
Section 3: Tiling Procedure

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Inspection before tiling</td>
<td>60</td>
</tr>
<tr>
<td>3.2 Setting out for tiling</td>
<td>61</td>
</tr>
<tr>
<td>3.3 Loading of the tiles on to the roof</td>
<td>61</td>
</tr>
<tr>
<td>3.4 Laying of tiles</td>
<td>62</td>
</tr>
<tr>
<td>3.5 Eaves</td>
<td>63</td>
</tr>
<tr>
<td>3.6 Valleys</td>
<td>64</td>
</tr>
<tr>
<td>3.7 Ridges</td>
<td>66</td>
</tr>
<tr>
<td>3.8 Hips</td>
<td>68</td>
</tr>
<tr>
<td>3.9 Verges</td>
<td>69</td>
</tr>
<tr>
<td>3.10 Abutments and flashings</td>
<td>71</td>
</tr>
<tr>
<td>3.11 Inspection after tiling</td>
<td>75</td>
</tr>
</tbody>
</table>
3.1 Inspection before Tiling

To ensure that a high standard of roof construction is achieved, it is essential that the timber structure is sound. It is therefore important that the following pre-tiling inspection be completed:

- Batten spacing must confirm with the manufacturer’s specification and recommendations.
- Roof trusses are properly spaced, secured and adequately braced. Refer to section 5: Timber roof construction.
- Undertile membrane is properly installed.
- Hip and valley underlay/overlay strips are installed.
- Trusses and battens must be true and level.
- Battens have been fixed at valleys to support the valley flashing.
- 38 x 50mm verge counterbattens have been installed.
- An additional batten has been fixed on top of the hip rafter to form a hip tree for fixing of hip tiles at roof pitches above 45°.
- The position of the first batten must be accurately established to ensure the correct overhang of the roof tiles into the gutter. Refer to Figures 26 and 27.
- The top batten must be positioned not more than 25mm from the rafter apex to ensure sufficient overlap of the ridge tile over the top course of tiling. Refer to Figure 28.
- For flat tiles this dimension varies from 25-50mm – refer to manufacturer.
- Fascias, gutters and valley gutters have been installed.
- Parapet walls or any walls extending above the roof have been completed (including plastering and painting.)
- Abutment flashings have been installed. Refer to Figures 62-66.
- Beam fillings has been completed.

Note:
Ensure that all other trades are completed before tiling commences.

Figure 26: Eaves batten position with fascia

Figure 27: Eaves batten position without fascia

Figure 28: Top batten to apex distance

Legend
16 – Batten
17 – Tilting batten
22 – Rafter
32 – Fascia
43 – Undertile membrane
47 – Undertile membrane support
63 – Tilting dimension
3.2 Setting out for Tiling

Set out one course of tiles from right to left along the eaves and along the ridge in order to achieve an equal overhang at both verges. By slightly adjusting the verge overhang and using the tolerance in the side interlock of the tile, the linear coverage of the roof can be achieved with full tiles. Refer to Figure 29

Where this is not possible, for instance between two parapet walls, cut tiles might have to be used at each end. Cut tiles should be on a size that can be securely fixed.

Chalk lines are then struck from eaves to ridge at three-tile intervals to guide tiling. Refer to Figure 31

Note: When setting out battens, the batten centres should be established from top batten to the eaves batten. This will ensure that the top course of tiles at the ridge as well as the bottom course at the eaves will always be made up of full tiles.

3.3 Loading of the Tiles on to the Roof

Care must be taken to avoid any damage to the undertile membrane during the loading of the roof tiles. The roof should be loaded evenly on either side from top to bottom by placing stacks of six tiles between every second batten on top of the rafters. Refer to Figure 30

Figure 29: Setting out of tiles at ridges and eaves

Figure 30: Loading diagram

Legend

01 – Roof tile
15 – Tile stack
16 – Batten
17 – Tilting batten
19 – Verge counter batten
21 – Truss
60 – Masonry wall
On completion of the setting out, the tiling work can proceed. Ensure that the first course of tiles at the eaves overhang passes the fascia board by an amount sufficient to ensure that water discharges freely into the centre of the gutter (min 50mm).

For positive location of the tiles, ensure that the tiles are fully supported by the battens on the batten bearers, and that the lugs of the tile butt-up squarely against the top edge of the battens. This will ensure that the tiles are in straight courses horizontally and vertically.

Standard interlocking tiles should be laid from right to left, from eaves to ridge, taking three rows at a time in straight bond. Flat tiles should be laid in broken bond. Refer to Figure 32

Work according to the chalk lines marked during setting out. The chalk lines will assist in keeping the vertical rows of tiles in straight parallel lines.

Tiles must be laid loose and not tight against each other to allow for thermal movement.

Certain tiles, such as flat tiles, must be laid in a broken bond, requiring half tiles in every second course at the gable ends. Refer to Figure 32

These tiles, due to their flat design, do not have the inherent strength of profiled tiles and may be damaged or broken if walked upon after installation. Care should therefore be taken when carrying out maintenance work. For further information on these tiles contact the relevant manufacturers.

Nailing or clipping tiles and fixing of storm clips where appropriate must be carried out as the work proceeds. For detailed information on appropriate fixing methods refer to Section 2 for roof pitch, wind forces and nailing recommendations.

Nails used for the fixing of tiles should be non-corrosive clout nails of sufficient length to penetrate the battens to a depth of at least 25mm.

Legend

01 – Roof tile
02 – Taper ridge
13 – Chalk line
14 – Striking chalk line
16 – Batten
32 – Fascia
The first course of tiles at the eaves must be in the same plane as the remainder of the roof. To achieve this it must be supported by a continuous tilting batten and not by fascia board only. The average tilting dimension at the eaves course is ±14mm. This dimension can be checked by placing a straightedge over the last three courses of tiles. Refer Figure 34

Eaves can either be closed or open. In exposed and high wind areas, it is recommended to lose off the eaves to prevent tiles from being blown off the roof. Under 26° pitch the underlay must be supported between the tilting batten and the first batten.

If no fascias or gutters are used, the rafter should be cut at right angles so that rainwater discharging from the tiles will not rot the rafter ends. Refer to Figure 35

Legend

- 01 – Roof tile
- 16 – Batten
- 17 – Tilting batten
- 22 – Rafter
- 23 – Tie Beam
- 26 – Wall plate
- 30 – Timber support
- 31 – Timber framing
- 32 – Fascia
- 37 – Eaves lining
- 43 – Undertile membrane
- 47 – Undertile membrane support
- 48 – Gutter
- 58 – Cover flashing
- 60 – Masonry wall
- 69 – Straight edge
The size of the valley gutter will depend on the area of the roof section which discharges rainwater to the valley gutter. Valleys can either be closed or preferably open to avoid blockages by leaves etc. stopping the flow of water. Refer to Figures 38-40

The tiles on both sides of the valley must be neatly cut, holed and secured to the counterbatten by means of baling wire.

Where a valley forms a junction between two roof slopes of different pitches (known as a bastard valley), a special valley gutter is recommended. Refer to Figure 42

The raised section in the centre of the valley gutter is to prevent water discharging from the steeper slope of the roof from spilling over the apron of the gutter on the shallower slope of the roof. This should be a minimum of 75mm high.

Figure 38: Open valley

Figure 39: Open valley with preformed gutter

Legend

- 01 – Roof tile
- 16 – Batten
- 20 – Valley counter batten
- 22 – Rafter
- 27 – Valley rafter
- 40 – Fixing nail
- 43 – Undertile membrane
- 45 – Underlay strip
- 53 – Valley gutter
Figure 40: Open valley with special gutter

Figure 41: Closed valley with preformed gutter

Figure 42: Bastard valley with special gutter

Legend
01 – Roof tile
16 – Batten
20 – Valley counter batten
22 – Rafter
27 – Valley rafter
40 – Fixing nail
43 – Undertile membrane
45 – Underlay strip
53 – Valley gutter
3.7 Ridges

a) Tapered ridge tiles

A 150mm wide strip of damp-proof course sheeting is recommended under the ridge overlapping the top course of tiles by at least 25mm on either side. Set out the full ridge length before bedding the ridge tiles in mortar. Tapered ridge tiles have a variable overlap and no cutting is required. By increasing the overlap slightly between the ridge tiles the whole ridge can be covered with full tiles. Place mortar on the top course of tiles to form a continuous bed into which the ridge tiles are bedded. The ridge tiles should overlap the top course of tiling by at least 75mm. Solid bed the end ridge tiles at gable ends, using mortar inset with broken pieces of tile, neatly pointed at fair ends.

Neatly cut and mitre ridge tiles at intersections with hip etc. Cut off excess mortar and smooth with a wet brush.

b) Butt ridge tiles

Edge bed the butt ridge tiles and solid bed at the joints in mortar over a strip of damp proof course sheeting. As in (a) the joints between the ridge tiles must be filled with mortar supported by broken tile pieces, struck flush with the ridge tiles and wet brushed to a smooth finish. Cut and mitre the tiles where necessary. At the gable ends fill with mortar inset with broken tile pieces cut off excess mortar and smooth with a wet brush.
c) Butt Monoridge tiles
Butt monoridge tiles must be edge-bedded in mortar on the top course of roof tiles over a strip of damp proof course. The damp proof course should be bent over and taken down inside the vertical leg of the monoridge. The vertical leg of the monoridge must be fixed with non-corrosive screws or nails. The joints between the monoridges must be filled with mortar supported on broken tile pieces, struck flush with the monoridges and wet brushed to a smooth finish. The monoridges must be neatly cut and mitred at intersections with verges. The ends must be filled with mortar, struck flush with the verge tiles and wet brushed to a smooth finish.

d) Capped monoridge tiles
Capped monoridges are fixed in the same manner as butt monoridges. The capped ends and at intersections with verges must be filled with mortar, struck and wet brushed to a smooth finish.

e) Ventilated ridge tiles
Where ventilated ridge tiles are installed an opening must be made in the underlay under each ventilated ridge to allow a free flow of air. Note: Mortar
Mortar for bedding and pointing for ridges and hips should consist of 3 parts clean plaster sand to one part of Portland cement tinted with an inorganic pigment to blend in with the colour of the roof tiles.

All fittings to be bedded in mortar should be soaked in water to ensure a good bond.
Tiles of the main roof must be cut closely to the rake of the hip. Refer to Figure 49. The hips can be covered with either overlapping or butt-jointed ridge tiles and edge-bedded as described for ridge tiles.

a) Hips using taper ridge tiles

When used on hips taper ridge tiles are suitable for any pitch of roof up to vertical. At vertical hips and pitches above 45° all ridge tiles must be mechanically secured in addition to bedding in mortar. To secure the ridge tiles additional battens must be fixed on top of the hip rafter to form a hip tree of sufficient height to permit the mechanical fixing of the ridge tiles. Refer Figure 51

The taper ridge tiles are fixed in the overlap by nailing to the hip tree using non-corrosive nails. Cutting of ridge tiles can usually be eliminated as the tiles have a variable overlap. Only the end ridge tile which forms an intersection with the ridge is mitred to fit and solid-bedded in mortar. The taper ridge tiles are edge-bedded in mortar which is struck off and wet brushed to a smooth finish.

Hip irons must be used at pitches above 45° to secure the hip starter to the hip tree using two non corrosive nails or screws. Hip irons are bent to shape using 32mmx3mm galvanised steel. Refer to detail of hip iron Figure 51

b) Hips using butt ridge tiles

When used on hips, butt ridge tiles should only be used on roof pitches below 45°. They must be edge bedded in mortar and solid-bedded at the joints. The mortar at the joints is truck flush with the top of the ridge tile and wet brushed to a smooth finish. Hip irons are recommended to secure the starter ridge tiles.

Purpose-made hip starters should be used at the start of each hip. Alternatively the first ridge tile can be shaped to line up with the eaves courses and must be solid-bedded with mortar inset with broken tile filler pieces and pointed at the fair end. Refer to Figure 50

Legend

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Roof tile</td>
</tr>
<tr>
<td>02</td>
<td>Taper ridge</td>
</tr>
<tr>
<td>03</td>
<td>Butt ridge</td>
</tr>
<tr>
<td>05</td>
<td>Hip starter</td>
</tr>
<tr>
<td>11</td>
<td>Mortar bed</td>
</tr>
<tr>
<td>12</td>
<td>Mortar joint</td>
</tr>
<tr>
<td>16</td>
<td>Batten</td>
</tr>
<tr>
<td>22</td>
<td>Rafter</td>
</tr>
<tr>
<td>28</td>
<td>Hip rafter</td>
</tr>
<tr>
<td>29</td>
<td>Hip tree</td>
</tr>
<tr>
<td>43</td>
<td>Undertile membrane</td>
</tr>
<tr>
<td>68</td>
<td>DPC 150mm wide</td>
</tr>
<tr>
<td>70</td>
<td>Mortar closure</td>
</tr>
</tbody>
</table>
3.9 Verges

Verge tiles must be mechanically fixed on the vertical face to a 38x50mm counterbatten placed on edge with non-corrodible screws or serrated nails.

With bold-contoured roof tiles the verge counter batten must be raised above the batten line to ensure good fixing of the verge tiles. Refer to Figure 52

With standard profile of roof tiles the verge counterbatten must be positioned flush with the top of the tiling battens. Refer to Figure 53

The first verge tiles should have a 25mm tilt at the start to compensate for the overlap and obtain the correct alignment. This is achieved by extending the fascia board or the tilting batten by 25mm. Refer to Figures 54 and 55

Figure 52: Verge counter batten – bold profile

Figure 53: Verge counter batten – flat profile

Figure 54: Verge detail with fascia

Legend

01 – Roof tile
04 – Verge tile
16 – Batten
17 – Tilting batten
18 – Counter batten
19 – Verge counter batten
22 – Rafter
32 – Fascia
38 – Soffit lining
40 – Fixing nail
43 – Undertile membrane
60 – Masonry wall
The verge can either be a flush verge, Refer to Figure 56, or an overhanging verge. Refer to Figure 57

In exposed areas it is recommended that the verges should be closed. The undertile membrane should therefore be extended to the full overhang of the verge.

The first verge tile is positioned to abut against the second course of tiles. Mark the front side to line up with the eaves course and cut to the required length. Refer to Figures 58 to 59

Thereafter, each following verge tile is fitted butting against the next course of tiles above and overlapping the verge tile below. Refer to Figure 61

The top verge tiles are mitred with the ridge tile and bedded to form a neat secure joint. Refer to Figure 60

Figure 58: First verge tile
Figure 60: Verge/ridge junction
Figure 61: Illustrating positions of verge tiles
Figure 59: Cut first verge tile

Legend
01 – Roof tile
02 – Taper ridge
04 – Verge tile
05 – Hip starter
10 – Fixing point
32 – Fascia
65 – Off-cut
Adequate flashing must be provided where roof tiling meets abutments, protrusions and where changes in roof pitch occur. The flashing material must be weather resistant and durable. The correct choice of flashing material depends on the corrosion risk.

Materials considered suitable for flashing are zinc, zinc alloy, aluminium alloy, galvanised iron, copper and lead. The flashing and cover flashing should be of the same material to avoid any electrolytic corrosion.

Table 11: Recommended flashing material

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanised iron</td>
<td>0,6</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0,5</td>
</tr>
<tr>
<td>Zinc alloy</td>
<td>0,6</td>
</tr>
<tr>
<td>Lead</td>
<td>1,0</td>
</tr>
</tbody>
</table>

It should be noted however, that aluminium and galvanised steel react to some degree when in contact with cement based products, mortar and plaster. To prevent any reaction it is recommended that two coats of bituminous or any other suitable paint be applied to the contact surfaces.

a) Apron flashing

Flashing material should be dressed over the tiles and fixed to the wall face, overlapping the tiles by at least 150mm. A suitable material would be lead as it is easily dressed into the profile of the roof tiles. Refer to Figure 62

b) Side flashing

Flashing material must be dressed over the tiles and fixed against the wall face. It must be carried over the first tile contour into the pan of the roof tile. The undertile membrane should be carried up above the roof tiles. Refer to Figure 63

c) Concealed gutter flashing

The preformed gutter must be supported by a timber fillet and fixed against the wall face. Refer to Figure 64
d) Back gutter

The size of the back gutter should be calculated in relation to its length and the volume of water it will receive. It should be at least 200mm wide and have minimum thickness of 0.6mm flashing material.

The detail for the undertile membrane, battening and overhang of the tiles into the gutter should be the same as the eaves detail. A timber fillet, cut to shape, must be installed to support the back gutter. Refer to Figure 65.

e) Box gutters

The box gutter must be supported by a continuous timber support. The underlay from the roof must extend into the gutter and the tiles must be tilted up to the wall and should be in the same plane as the roof. To prevent any water entering between the gutter and the masonry wall, special attention should be given to the cover flashing which must be cut into the wall, wedged and sealed, the vertical leg extending into the gutter and sealed against the side wall of the gutter.

Legend

01 - Roof tile
16 - Batten
17 - Tilting batten
22 - Rafter
26 - Wall plate
30 - Timber support
43 - Undertile membrane
47 - Undertile membrane support
49 - Box gutter
52 - Chimney back gutter
58 - Cover flashing
60 - Masonry wall

Figure 65: Back gutter

Figure 66: Box gutter
f) Chimney flashing

Flashing to chimney stacks comprises apron flashing, side flashing, cover flashing and back gutter flashing. Lead is the most suitable material for chimney flashings as it lends itself to close dressing at angles and the contours of the roof tiles. When a more rigid material is used, care should be taken at the watershed points of the back gutter to ensure a completely waterproof junction.

For the chimney back gutter, full timber support must be provided. Refer to Figures 67-70.

Figure 67: Apron flashing

Figure 68: Apron/side flashing

Figure 69: Back/side wall flashing

Figure 70: Chimney cover flashing

Legend

01 – Roof tile
55 – Apron flashing
56 – Side wall flashing
57 – Back gutter flashing
58 – Cover flashing
61 – Chimney stack
g) Vent pipes
Preformed fittings for vent pipes and other similar protrusions are available. Alternatively, lead can be used successfully. Refer to Figures 71 and 72.

h) Mansard roofs
Mansard is a form of roof in which two slopes, the lower roof being steeper than the upper roof, meet. At the intersection of the two roof planes where purpose-made tiles are not used, the tiles should be nailed and clipped. Lead flashing should be installed to prevent wind-driven rain from entering into the roof space. If the tiles are positioned correctly at the junction, the weatherhead of the upper tile will form a perfect closure with the tile beneath it. Refer to Figure 73.
Roof level across the plain. No sagging visible (especially at eaves tiles)
Roof pitch, truss spacing and batten spacing according to specification
Fixing of tiles carried out in accordance with recommendations in the Concrete Manufacturers Association “Technical and Detailing Manual for Concrete roof tiles”
Undertile membrane properly installed (especially at closed eaves)
All parapet walls and abutments completed
Flashing to parapet walls, abutments and protrusions such as vent pipes properly carried out.
Beam filling completed

Ridge and hip tiles properly bedded in mortar and jointing mortar tinted to match roof tiles. Hip iron installed when required.
Hip and ridge tiles neatly cut at junctions and solid bedded
Tiles in valleys neatly cut and properly secured
Verge tiles secured to verge counter-batten
Roof left perfect and watertight on completion. All gutters and valleys cleaned out
All cracked tiles replaced
All tiles to be in straight courses horizontally and vertically

3.11 Inspection after Tiling

- Roof level across the plain. No sagging visible (especially at eaves tiles)
- Roof pitch, truss spacing and batten spacing according to specification
- Fixing of tiles carried out in accordance with recommendations in the Concrete Manufacturers Association “Technical and Detailing Manual for Concrete roof tiles”
- Undertile membrane properly installed (especially at closed eaves)
- All parapet walls and abutments completed
- Flashing to parapet walls, abutments and protrusions such as vent pipes properly carried out.
- Beam filling completed

i) Change in pitch
Where a change in the roof pitch occurs (as in the case of a sloping dormer) sheet lead flashing should be placed at the intersection. It should be dressed over the contours of the lower tiles and turned up under the upper tiles. Refer to Figure 74

j) Skylights
The treatment for skylights should be similar to that described for abutments and chimneys.
Section 4: Detailing

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>COMPUTER REFERENCE NUMBER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Preface</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>4.2 BAten positions</td>
<td>RT-BA-01/03</td>
<td>81</td>
</tr>
<tr>
<td>4.3 UNdertile membrane</td>
<td>RT-UN-01/04</td>
<td>82</td>
</tr>
<tr>
<td>4.4 Condensation and Ventilation</td>
<td>RT-CV-01/02</td>
<td>85</td>
</tr>
<tr>
<td>4.5 EAves</td>
<td>RT-EA-01/05</td>
<td>86</td>
</tr>
<tr>
<td>4.6 VAIlleys</td>
<td>RT-VA-01/05</td>
<td>89</td>
</tr>
<tr>
<td>4.7 RIdges</td>
<td>RT-RI-01/07</td>
<td>92</td>
</tr>
<tr>
<td>4.8 HIps</td>
<td>RT-HI-01/03</td>
<td>95</td>
</tr>
<tr>
<td>4.9 VErges</td>
<td>RT-VE-01/06</td>
<td>97</td>
</tr>
<tr>
<td>4.10 Abutments and Flashings</td>
<td>RT-AF-01/06</td>
<td>99</td>
</tr>
<tr>
<td>4.11 Special Roofs</td>
<td>RT-SR-01/02</td>
<td>101</td>
</tr>
</tbody>
</table>
4.1 Preface

The purpose of this section of the CMA’s concrete roof tile manual is to provide guidelines for the detailing of concrete roof tiles.

It should be read in conjunction with the technical section of the manual. The National Building Regulations and the relevant South African Bureau of Standards specification and codes of practice

The details given in the manual are also available on various CAD systems.

The computer reference number is the file name under which the drawing is saved.
4.2 Batten Positions

RT-BA-01: Eaves batten position with fascia

RT-BA-02: Eaves batten position without fascia

RT-BA-03: Ridge batten position

RT-BA-NB

Notes:
Position of the first batten must be accurately established to ensure the correct overhang of the roof tiles into the gutter.

The top battens at the ridge must be positioned 25mm (for flat profile 25-50mm – refer to the manufacturer) from the roof apex to ensure maximum overlap of the ridge tiles over the top courses of roof tiles.

Legend
16 – Batten
17 – Tilting batten
22 – Rafter
32 – Fascia
43 – Undertile membrane
47 – Undertile membrane support
63 – Tilting dimension
4.3 Undertile Membrane Details

RT-UN-01: Undertile membrane over pitched roof illustrating laps

Legend

16 – Batten
17 – Tilting batten
19 – Verge counter batten
21 – Truss
43 – Undertile membrane
44 – Undertile membrane overlap
60 – Masonry wall
RT-UN-02: Undertile membrane over boarded roof illustrating laps

RT-UN-NB

Notes:
Undertile membrane must comply with type E of SANS 952-1985 or hold an Agrément certificate as recommended and have a nominal thickness of 250 microns (0.25mm).
Undertile membrane is recommended at all pitches in all areas. It is mandatory for roof pitches below 26° and above 45° and for all pitches in coastal and other exposed and windy areas.
Undertile membrane overlap 150mm minimum.
Side undertile membrane overlap always over rafter.
Extra undertile membrane material is required in the following areas:
- Hips – 600mm wide strip over the main roof undertile membrane
- Valleys – 600mm wide strip under the main roof undertile membrane

Legend
- 16 – Batten
- 17 – Tilting batten
- 18 – Counter batten
- 22 – Rafter
- 36 – Boarding
- 43 – Undertile membrane
- 44 – Undertile membrane overlap

150mm min.
4.3 Overlay and Underlay Strips

Legend
- 21 – Truss
- 22 – Rafter
- 43 – Undertile membrane
- 45 – Underlay strip
- 46 – Overlay strip

RT-UN-03: Hip 600mm overlay strip

RT-UN-04: Valley 600mm underlay strip
4.4 Condensation and Ventilation

RT-CV-01: Ventilated closed eaves

Legend
- 01 – Roof tile
- 08 – Storm clip
- 16 – Batten
- 17 – Tilting batten
- 22 – Rafter
- 30 – Timber support
- 32 – Fascia
- 37 – Eaves lining
- 43 – Undertile membrane
- 47 – Undertile membrane support
- 48 – Gutter
- 62 – Air brick

RT-CV-NB

Notes:
Condensation can be prevented by the provision of adequate ventilation of the roof space at eaves, ridges and gable ends. This will ensure an efficient flow of air by convection even if no external air movement is present. Refer to Detail RT-RI-06, illustrating the ventilating ridge tile.

RT-CV-02: Open eaves with airbrick
RT-EA-NB

Notes:
The average tilting dimension at the eaves course is about 14mm. This dimension can be checked by placing a straight-edge over the last three courses of the tiles to ensure that all tiles lie in the same plane without a tilt or a droop.

Under 26° the undertile membrane should be supported to prevent ponding between the fascia thus allowing a free flow of water into the gutter.

Legend
01 – Roof tile
16 – Batten
17 – Tilting batten
22 – Rafter
30 – Timber support
31 – Timber framing
32 – Fascia
37 – Eaves lining
43 – Undertile membrane
47 – Undertile membrane support
48 – Gutter
60 – Masonry wall
69 – Straight edge
Legend

- 01 – Roof tile
- 08 – Storm clip
- 16 – Batten
- 17 – Tilting batten
- 22 – Rafter
- 23 – Tie-beam
- 26 – Wallplate
- 32 – Fascia
- 43 – Undertile membrane
- 47 – Undertile membrane support
- 48 – Gutter
- 60 – Masonry wall

RT-EA-03: Open eaves

RT-EA-04: Eaves flush with wall
RT-EA-NB

Notes:
Eaves can either be closed or open. In exposed and high wind areas, it is recommended that the eaves be closed off to prevent tiles from being blow off the roof. Under 26° pitch the undertile membrane must be supported by the eaves.

If no fascias or gutters are used, rafters should be cut at right angles so that rainwater discharging from the tiles will not rot the rafter ends. Refer to Detail RT-EA-03, page 69.

With concealed gutters special attention must be given to the size of gutter and outlets in relation to the area of the roof. Allowance should be made for an emergency overflow outlet in case of the gutter becoming blocked.

Legend

01 – Roof tile
16 – Batten
17 – Tilting batten
22 – Rafter
26 – Wallplate
31 – Timber framing
32 – Fascia
37 – Eaves lining
43 – Undertile membrane
47 – Undertile membrane support
48 – Gutter
58 – Cover flashing
60 – Masonry wall
4.6 Valley Details

RT-VA-01: Open valley with valley gutter

Legend

01 – Roof tile
16 – Batten
20 – Valley counter batten
22 – Rafter
27 – Valley rafter
40 – Fixing nail
43 – Undertile membrane
45 – Underlay strip
53 – Valley gutter

RT-VA-02: Open valley with preformed gutter
RT-VA-03: Open valley with special gutter

RT-VA-04: Closed valley with preformed gutter

Legend
01 – Roof tile
16 – Batten
20 – Valley counter batten
22 – Rafter
27 – Valley rafter
40 – Fixing nail
43 – Undertile membrane
45 – Underlay strip
53 – Valley gutter
RT-VA-NB

Notes:
The size of the valley gutter will depend on the area of the roof section which discharges rainwater into the valley gutter and must be at least 300mm wide. For large roof areas, the valley gutter must be increased to 450mm or 650mm.

Where a valley forms a junction between two roof slopes of different pitches (known as a bastard valley), a special valley gutter is required. Refer to Detail RT-VA-05.

The raised section in the centre of the valley gutter which is a minimum of 75mm high is to prevent water coming down from the steeper slope of the roof from spilling over the valley gutter on to the shallow slope of the roof.
4.7 Ridge Details

RT-RI-01: Tapered ridge

RT-RI-02: Monopitch ridge using overlapping monoridge

Legend

- **01** – Roof tile
- **02** – Taper ridge
- **04** – Verge tile
- **07** – Monopitch ridge
- **10** – Fixing point
- **11** – Mortar bed
- **16** – Batten
- **22** – Rafter
- **43** – Undertile membrane
- **68** – DPC 150mm wide
- **70** – Mortar closure
RT-RI-03: Monopitch ridge using butt jointed monoridge

Legend
01 – Roof tile
04 – Verge tile
07 – Monopitch ridge
10 – Fixing point
11 – Mortar bed
12 – Mortar joint
16 – Batten
22 – Rafter
32 – Fascia
38 – Soffit lining
40 – Fixing nail
43 – Undertile membrane
60 – Masonry wall
70 – Mortar closure

RT-RI-04: Section through overlapping monoridge

RT-RI-05: Section through monoridge/soffit lining
RT-RI-NB

Notes:

Ridges:

Ridge tiles are either tapered ridges or 120° butt ridges. Prior to bedding in mortar, a strip of DPC must be placed under the ridge tiles so that it overlaps the top course of roof tiles on either side of the roof by at least 25mm. The ridge tiles are then edge-bedded into a continuous bed of mortar which is placed onto the top courses of the roof tiles. Butt ridges to be solid bedded at butt joints only.

Monopitch ridges:

Monopitch ridges are available with overlapping collars or butt-jointed. Ridge tiles must be edge-bedded with mortar which is placed over the DPC strip on the top course of tiles. Mechanical fixing with non-corrosive screws or serrated nails is recommended on the vertical face of the monopitch ridge tile.

Legend

- 01 - Roof tile
- 03 - Butt ridge
- 06 - Ventilated ridge
- 11 - Mortar bed
- 16 - Batten
- 22 - Rafter
- 43 - Undertile membrane
- 68 - DPC 150mm wide
4.8 Hip Details

RT-HI-01: Overlapping ridge with hip starter

Legend
- 01 – Roof tile
- 02 – Taper ridge
- 03 – Butt ridge
- 05 – Hip starter
- 12 – Mortar joint
- 22 – Rafter
- 28 – Hip rafter
- 70 – Mortar closure

RT-HI-02: Butt ridge
Legend

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Roof tile</td>
</tr>
<tr>
<td>02</td>
<td>Taper ridge</td>
</tr>
<tr>
<td>11</td>
<td>Mortar bed</td>
</tr>
<tr>
<td>16</td>
<td>Batten</td>
</tr>
<tr>
<td>22</td>
<td>Rafter</td>
</tr>
<tr>
<td>28</td>
<td>Hip rafter</td>
</tr>
<tr>
<td>29</td>
<td>Hip tree</td>
</tr>
<tr>
<td>43</td>
<td>Undertile membrane</td>
</tr>
<tr>
<td>68</td>
<td>DPC 150mm wide</td>
</tr>
</tbody>
</table>

Notes:

Overlapping or butt-ridge tiles are used for hips.

On steep pitches, in addition to bedding in mortar, all ridge tiles should be mechanically fixed. The fixing of the overlapping ridge tiles is concealed as they are fixed in the overlap. On steep and vertical pitches butt ridge tiles should not be used.

Hip starters should be used at the start of each hip.

Alternatively, the first ridge tile can be shaped to line up with the eaves courses and solidly bedded in mortar with broken tile filler pieces and pointed at the fair end. At vertical hips and at pitches above 45°, hip irons must be used and additional battens must be fixed on top of the hip rafter to form a hip tree of sufficient height to permit the mechanical fixing of the ridges. Hip irons are usually made of 32 x 3mm galvanised steel and bent to a similar shape as that shown.

Mortar for bedding and pointing should consist of:

- 3 parts clean plaster sand and 1 part Portland cement, tined with an inorganic pigment to blend in with the roof tiles
- All fittings to be bedded in mortar should be soaked in water to ensure a good bond.
4.9 Verge Details

RT-VE-01: Position of verge counter batten for bold profile tiles

RT-VE-02: Position of verge counter batten for all other tiles

RT-VE-03: Verge counter batten with fascia

RT-VE-04: Verge counter batten without fascia

Legend

- 01 – Roof tile
- 04 – Verge tile
- 16 – Batten
- 17 – Tilting batten
- 19 – Verge counter batten
- 32 – Fascia
- 40 – Fixing nail
- 43 – Undertile membrane

RT-VE-NB

Notes:

All verge tiles must be fixed on the vertical face to the 38 x 50mm verge counter batten with non-corrosive screws or serrated nails. With bold contoured roof tiles the verge counterbatten must be raised above the batten line (Refer to RT-VE-01) to ensure good fixing of the verge tiles. With other profiles of roof tiles, the batten must be positioned flush with the batten line.

To compensate for the overlap, the first verge tile needs a 25mm tilt. This is achieved by extending the fascia by 25mm. Refer to RT-VE-03. Where no fascia is used the tilting batten is extended by 25mm.
RT-VE-05: Flush verge

Legend
01 – Roof tile
04 – Verge tile
16 – Batten
19 – Verge counter batten
22 – Rafter
40 – Fixing nail
43 – Undertile membrane
60 – Masonry wall

RT-VE-06: Overhanging verge
4.10 Abutments and Flashings

RT-AF-01: Apron flashing

RT-AF-02: Side flashing

RT-AF-03: Concealed gutter flashing

Legend

01 – Roof tile
16 – Batten
22 – Rafter
30 – Timber support
43 – Undertile membrane
50 – Concealed gutter
55 – Apron flashing
56 – Side wall flashing
58 – Cover flashing
60 – Masonry wall
RT-AF-NB

Notes:
Where roof tiling meets abutments and protrusions, adequate flashing must be provided. Flashing material must be fixed to the wall face and dressed over the roof tiles.

The cover flashing should be of the same material as the flashing, cut into the wall, wedged and joint sealed.

Provision must be made for an overflow in the event of a blockage in the gutter.

Legend
01 – Roof tile
16 – Batten
17 – Tilting batten
22 – Rafter
26 – Wall plate
30 – Timber support
43 – Undertile membrane
47 – Undertile membrane support
49 – Box gutter
52 – Chimney back gutter
58 – Cover flashing
60 – Masonry wall
RT-SR-NB

Notes:
Where a change of pitch occurs in a roof, the intersection between the upper and the lower slope is highly vulnerable to the ingress of water during heavy downpours combined with strong gusts of wind. The upper tiles at this intersection must line up with the lower tiles forming a perfect closure. The flashing should be taken past the tilting batten on the upper slope and dressed into the profile of the tiles on the lower slope.

RT-SR-01: Mansard roof

RT-SR-02: Change in pitch

Legend
01 – Roof tile
08 – Storm clip
16 – Batten
17 – Tilting batten
22 – Rafter
43 – Undertile membrane
54 – Flashing
Concrete Roof Tiles

Section 5
Timber Roof Construction
Section 5: Timber Roof Construction

CONTENTS

5.1 General information 106
5.2 Timber quality 106
5.3 Timber specification 107
5.4 Timber treatment 107
5.5 Storage of timber 107
5.6 Roof pitch and wind forces 108
5.7 Undertile membrane for roof tiles 109
5.8 Factory engineered trusses 111
5.9 Site manufactured trusses 112
5.10 Erection of trusses 115
5.11 The use of rafters only as roof supports 117
5.12 Fixing of battens 119
This section is devoted to timber roof construction, setting out what is considered to be acceptable and established practice in the design and manufacture of timber roof trusses. It is intended as a guide only and does not relieve the designer of the need to make a thorough study in relation to specific designs, site conditions, local authority by-laws and the National Building Regulations.

In South Africa, under the National Building Regulations, there are only two legal methods by which to design and construct timber roofs:

i) Roof trusses manufactured in accordance with Part L Roofs of SANS 10400 “The Application of the National Building Regulations”. This standard outlines the ‘deemed to satisfy’ requirements for nailed and bolted trusses.

ii) The second method is to engage the services of a professional engineer (as required in part B of the National Building Regulations) who would work strictly in accordance with SANS 10160 Loading Code and SANS 10163 “The Structural Use of Timber.”

Tacit approval has been given by municipalities in general to pre-fabricated truss fabricators who use a suite of design programs supplied by system suppliers to design roofs up to 10m in span for non public buildings. Most of these system suppliers have been accredited by the Institute for Timber Construction.

Larger buildings and those to whom the public has access are designed under the supervision of professional engineers using the same design programs.

Trusses designed by a competent person in accordance with Part B of the National Building Regulation are not limited to the span, pitch and geometric configuration of trusses specified in Part L of SANS 10400.

The Institute for Timber Construction works closely with both the Timber Division and the Civil Engineering Division of the SABS on grading specifications and design codes for structural timber as well as on matters affecting the National Building Regulations and the application thereof.

The Institute for Timber Construction have instituted a Certificate of Competence scheme for timber truss fabricators who design, manufacture and supply prefabricated nail-plated trusses.

Stringent auditing of the truss fabricators’ operations and key personnel before awarding these certificates is an assurance of quality trusses for specifiers and for the general public.

The accuracy and performance of prefabricated timber trusses exceeds that of bolted trusses and cost savings are often significant.

5.2 Timber Quality

All timber used for the construction of roof trusses, rafters and beams should be structural SA pine complying with the requirements of SANS 1783-2/1460/10149, and bear the full standardisation mark. Timber used for roof battens should comply with SANS 1783-4 and bear the full standardisation mark.

Timber used for the construction of roofs on site must be ordered in the dimensions in which it be used and must not be resawn into smaller cross-sectional sizes on site, as this will cause the grade, strength and dimensional tolerances to change.
In certain magisterial district in South Africa, it is illegal to use timber for structural purposes, which has not been treated against biological attack. Treatment can be either with CCA or Boron in accordance with SANS 10005 “Treatment of timber.” The districts as listed under Annexure A of Government Gazette No. 10158 27 March 1986 (regulation R602) are illustrated in Figure 1.

5.3 Timber Specification

The various grades of timber are defined by different strength properties and allowable design stresses. The grades commercially available are: M4, M5/V5, M6/V6 M7/V7, M8 (limited availability of grade 8).

Table 1: Nominal dimensions of rough-sawn timber

<table>
<thead>
<tr>
<th>Type</th>
<th>Width mm</th>
<th>Depth mm</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough-sawn timber</td>
<td>38</td>
<td>38, 50</td>
<td>From 2700mm to 6600mm in 300mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76, 114</td>
<td>increments. Some lengths</td>
</tr>
<tr>
<td></td>
<td></td>
<td>152, 228</td>
<td>in excess of 3.6m may only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>have 600mm increments</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>76, 152</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>228</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>76, 152</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>SA pine Stocklam</td>
<td>32 (27)</td>
<td>45 (40)</td>
<td></td>
</tr>
<tr>
<td>(planed)</td>
<td></td>
<td>70 (65)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 (95)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>140 (135)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100mm</td>
<td>600mm</td>
<td>Standard stock lengths are</td>
</tr>
<tr>
<td></td>
<td>in 33.3mm</td>
<td>in 33.3mm</td>
<td>available in 600mm increments up</td>
</tr>
<tr>
<td></td>
<td>increments</td>
<td>increments</td>
<td>to 18m long</td>
</tr>
</tbody>
</table>

5.4 Timber Treatment

In certain magisterial district in South Africa, it is illegal to use timber for structural purposes, which has not been treated against biological attack. Treatment can be either with CCA or Boron in accordance with SANS 10005 “Treatment of timber.”

5.5 Storage of Timber

Structural timber stored on site should be stacked on level ground on bearers and adequately protected against the weather by covering with a waterproof material. Air must be allowed to circulate through the timber stacks. Strapping around bundles of battens should not be removed until the battens are to be fixed. This will prevent excessive warping of the battens.

Figure 1: Map of South Africa showing coastal and other areas (shaded) currently requiring treatment of structural South African pine against biological attack
The roof as a whole should be designed to withstand the minimum design loadings in accordance with SANS 10160. “The general procedures and loading to be adopted in the design of buildings.”

When considering wind forces acting on a pitched roof, the pressure on the windward slope is dependent on the pitch. If the pitch is less than 30°, the windward slope may be subjected to severe suction or to negative pressure. If the pitch is steeper than 35°, the roof generally presents sufficient obstruction for a positive pressure to develop on the windward slope but, even in this case, there is an area near the ridge where suction develops. The leeward side is always subject to suction, though it is usually not as strong as the produced near the windward edge. Refer to Figures 2-4.

When considering pitches of roofs, conditions such as wind speed, shape and locality of building, height and exposure of the roof must be taken into consideration.

Recommended minimum pitches for the various types of concrete roof tiles are shown in the Manual under Section 2: Technical Data. Where rain and wind conditions are known to be severe, the roof pitch should, as a rule, be increased by 5° above the minimum. Roof pitches below 17.5° are not recommended.

Where a roof has a valley construction the pitch of the valley will be less than that of the general roof plane. The pitch of the roof should therefore be increased so that the pitch of the valley is not less than 17.5°. All valley and hip construction must be designed by a competent professional engineer.

For further information on wind forces, refer to the wind forces section of SANS 10062-2003 “Fixing of concrete interlocking roofing tiles.”
In current building practice, the undertile membrane has become an integral part of any tiled roof. When properly laid, it will provide a highly effective barrier against the ingress of wind-driven rain and dust and the pressures exerted by wind forces will be reduced substantially due to pressure equalisation.

The use of a suitable undertile membrane which complies with requirement type E of SANS 952 – 1985 or Agrément approved having a nominal thickness of 250 microns (0.25mm) is recommended for all pitches in all areas. **It is essential for roof pitches below 26° and above 45° and for all roof pitches in coastal and other exposed and windy areas.**

Undertile membrane must be fixed horizontally over the rafters, prior to battening, with a minimum overlap of 150mm and secured to the centre of the rafters with the minimum number of non-corrosive clout nails. The vertical laps should be secured over the rafters. Do not try and pull the undertile membrane tight.

At closed eaves, the undertile membrane should extend over tilting batten and fascia board to allow drainage of water into the gutter. It should be supported behind the fascia board to prevent it from sagging and forming a water trap. Refer to Figure 5

At open eaves, the undertile membrane should extend at least 20mm over the beam-filling on the exterior wall. Refer to Figure 6

Over a hip, a strip of undertile membrane 600mm wide should be laid overlapping the undertile membrane of the main roof. Refer to Figure 7

In valleys, a similar strip should be used and tucked under the undertile membrane of the main roof. Refer to Figure 8

Legend

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Roof tile</td>
</tr>
<tr>
<td>08</td>
<td>Storm clip</td>
</tr>
<tr>
<td>16</td>
<td>Batten</td>
</tr>
<tr>
<td>17</td>
<td>Tilting batten</td>
</tr>
<tr>
<td>21</td>
<td>Truss</td>
</tr>
<tr>
<td>28</td>
<td>Hip rafter</td>
</tr>
<tr>
<td>30</td>
<td>Timber support</td>
</tr>
<tr>
<td>31</td>
<td>Timber framing</td>
</tr>
<tr>
<td>32</td>
<td>Fascia</td>
</tr>
<tr>
<td>37</td>
<td>Eaves lining</td>
</tr>
<tr>
<td>43</td>
<td>Undertile membrane</td>
</tr>
<tr>
<td>45</td>
<td>Underlay strip</td>
</tr>
<tr>
<td>46</td>
<td>Overlay strip</td>
</tr>
<tr>
<td>47</td>
<td>Undertile membrane</td>
</tr>
<tr>
<td>48</td>
<td>Gutter</td>
</tr>
<tr>
<td>60</td>
<td>Masonry wall</td>
</tr>
</tbody>
</table>
In house designs where the boarding or ceiling boards are fixed on top of the rafters, counterbattens must be fixed on top of the ceiling boards directly above the rafters. The undertile membrane should then be laid horizontally over the counter battens resulting on top of the ceiling boards. The battens are then fixed to the counter battens at the required spacings. Refer to Figure 9.

Figure 9: Undertile membrane over ceiling illustrating laps

Legend
16 – Batten
17 – Tilting batten
18 – Counter batten
22 – Rafter
36 – Boarding
43 – Undertile membrane
44 – Undertile membrane overlap
A network of prefabricated timber roof truss manufacturers can be found throughout South Africa. These fabricators operate under licence to suppliers of nail-plate connectors and use computer design programs devised by professional engineers.

These fabricators are trained and equipped to offer advice and solutions for any shape of roof, and pitch or span for new structures, or to match existing roofs.

For the purposes of municipal approval, design calculations may be issued in a computer output format, together with the appropriate roof layout, truss diagrams and any explanatory notes.

When placing orders with a truss fabricator, or when a quotation is required, the fabricator must be provided with the following minimum information of a detailed drawing:

- Overall span of roof
- Eaves overhang
- Pitch of roof
- Cantilever distance (if any)
- Truss spacing (can be optimised by the truss engineer) normally 760mm for concrete tiles
- Roofing materials plus any special load
- Ceiling materials, plus any special loads
- Geyser position and capacity
- Hatch openings, size and position
- Special eaves details
- Other details which may affect the design

Typical documentation to accompany truss delivery

Under the Institute for Timber Construction Certificate of Competence scheme, the following is minimum information which is required to be sent to site:

1) The roof layout drawings, which must be provided for each project and must show:
 a) Loading, maximum truss and batten centres.
 b) The position of the trusses with their marks clearly indicated.
 c) The positions of the braced bays.
 d) The type of bracing employed, cross referenced to the bracing details.
 e) All erection details for hips and valleys.
 f) The position of any special connections or cleats.

2) The relevant bracing details, which must be included with the roof layout drawings.

3) Standard notes regarding material specification, sundry timber and bracing connections, nailing and bolting, which should be sent to the site whenever full engineering design drawings are not provided.

For further information and construction details pertaining to good practice in the manufacture, handling, erection and bracing of the roof structure, refer to various publications recommended under APPENDIX B SOURCE DOCUMENTS.
5.9 Site Manufactured Trusses

Roof trusses manufactured on site must comply with the minimum “deemed to satisfy” requirements for nailed and bolted trusses of SANS 10400 “The Application of the National Building Regulations; or be designed by a professional engineer or other competent person.

The requirements of the National Building Regulations are that the truss, single or double pitch, shall be ‘Howe’ type truss with a span not exceeding 10m for double pitch trusses and 6m for single pitch trusses. The trusses must be supported at heel joints only and have bays of equal lengths not greater than 1.5m. Refer to figures 14, 15 and 16

a) Where the roof covering is concrete tiles, the size of rafter (top chord), and tie-beam (bottom chord) and the grade of timber to be used shall be selected from Table 2 in such a way that the desired truss span does not exceed the relevant figure.

b) All web members shall be at least 38x114mm Grade 4 Timber.

c) Where the timber sizes are determined from Table 2, the pitch of the roof shall not be less 17.5°

Table 2: Maximum truss spans for various rafter and tie – beam sizes (Table 1 Part L SANS 10400)

<table>
<thead>
<tr>
<th>Truss member</th>
<th>Nominal timber size mm</th>
<th>Max span m</th>
<th>Timber grade 4</th>
<th>Timber grade 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafter</td>
<td>38 x114 38x152 38x228</td>
<td>6.0 8.2 10.0</td>
<td>9.0 10.0 10.0</td>
<td></td>
</tr>
<tr>
<td>Tie-Beam</td>
<td>38x114 38x152 38x228</td>
<td>4.7 5.9 7.2</td>
<td>6.7 8.5 10.0</td>
<td></td>
</tr>
</tbody>
</table>

a) Truss spacing for concrete tiles

The spacing of roof trusses in accordance with SANS 10400 Part L ‘Roofs’ shall not exceed 760mm from centre to centre using 38x38 mm battens at maximum 345mm centres.

This truss spacing may be increased when using engineered trusses designed by a professional engineer in accordance with SANS 10163, and using 38x50mm battens to SANS 653 to suit the span as indicated in Table 3.

Table 3: Truss spacing (Concrete roof tiles)

<table>
<thead>
<tr>
<th>Max Truss Centres mm</th>
<th>Max Batten Centres mm</th>
<th>Size of Battens mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>760</td>
<td>345</td>
<td>38x38</td>
</tr>
<tr>
<td>900</td>
<td>345</td>
<td>38x50 flat</td>
</tr>
<tr>
<td>1000</td>
<td>345</td>
<td>38x50 on edge</td>
</tr>
</tbody>
</table>

b) Joints in trusses

The number of connecting devices to be used at each intersection between two members at any heel joint or any splice in a truss shall be determined from Table 4.

In the case of any joint other than a heel joint or splice, one 10mm bolt plus three 90x4mm nails shall be used.

Table 4: Number of connecting devices required in heel joints and splices (Table 2 Part L SANS 10400)

<table>
<thead>
<tr>
<th>Truss Span mm</th>
<th>(390x4mm) nails plus 16mm bolts only</th>
<th>50mm toothed ring connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Bolts</td>
<td>No. of Bolts</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

c) Manufacture of trusses on site

To ensure a high standard of finish, it is essential that the roof structure is properly constructed. Poor workmanship and warped timber will reflect on the finished product and may result in deflection and distortion of the roof.

- Select a level surface to work on
- Set out the first truss according to span and pitch of the roof
- Mark out the timber for various members of the truss and cut accurately
- Assemble the truss by nailing and bolting through the two thicknesses of timber and
clinch the nails over on the reverse side.

- The bolts must have a washer on either end and should be tightened without crushing the timber under the washers.
- The completed truss can now be used as a jig for the construction of the remaining trusses of the same size.

Note: Trusses can also be manufactured on site to an engineer’s design using nail-plate connectors. This method can show substantial savings in timber requirements.

d) Illustrations of hips and valleys

For the construction of hips and valleys the services of a professional engineer should be engaged. This is a requirement of SANS 10400/NBR.

The following are illustrations only of some of the many types of hips and valleys and must not be used for construction purposes.

Where the pitch of a roof exceeds 40° additional battens must be fixed on top of the hip rafter to form a hip tree of sufficient height to permit the mechanical fixing of the ridge tiles. Refer to Figure 10

Figure 10: Hip tree

Figure 11: Hip and jack trusses

Figure 12: Using trusses ranging in spans to form a valley

Figure 13: Valley using valley rafters

Legend

16 – Batten
21 – Truss
22 – Rafter
26 – Wall plate
27 – Valley rafter
28 – Hip rafter
29 – Hip tree
43 – Undertile membrane
e) Typical roof trusses for site manufacture

Figure 14: Howe truss 4 bay

Figure 15: Howe truss 6 bay (can also be 8 bay with a maximum span of 10m)

Figure 16: Half-Howe truss

Figure 17: Stub end truss (must be designed by a professional engineer)

Legend
22 – Rafter
23 – Tie beam
24 – King post
25 – Web
26 – Wall plate
60 – Masonry wall
Failure of roofs can often be attributed to poor workmanship and the disregard of simple erection procedures.

Trusses should be protected against any damage on site whilst awaiting erection. They should be stacked on level ground on timber bearers and covered with a waterproof material but with adequate ventilation. When handling trusses care must be taken to avoid any damage to the timber and to the joints.

- if possible, carry trusses vertically
- With large trusses, sufficient labour should be made available to provide full support avoiding any sagging or whipping when carrying the truss horizontally
- Do not “see-saw” the truss across the walls or scaffolding
- Lift trusses onto the wall in an upright position.

Erection procedure:

a) Lay the wall plates in position and level. Mark truss centres on the wall plates on either side of the building and ensure that they are square with the gable end of the building.

b) Lift the first truss onto the marked position on the wall plate. Plumb the truss and secure in the position using temporary props. Refer to Figure 18

c) A further two trusses can now be lifted into position, plumbed and fixed temporarily to the first truss using 38x38mm battens fixed on either side of the ridge keeping the trusses in a vertical position. Fix vertical cross bracing to either side of the king post using 38x76mm M4 grade timber, fixing each connection with two no75x3.5mm wire nails. The three trusses attached with cross bracing create a rigid unit to which the other trusses can be attached with temporary battens. These temporary battens and bracing can be removed once all the permanent battens are fixed. Refer to Figure 19

d) The remainder of the trusses can be erected, plumbed and attached to the three braced trusses using battens as temporary bracing

e) Span a builder’s string line across the rafters of the trusses to check alignment and adjust where necessary using hardboard wedges under the tie-beams of the trusses and skew nail all trusses to wall plate with 100mm nails.

Legend

16 – Batten
21 – Truss
26 – Wall plate
21 – Truss
33 – Cross bracing
39 – Prop
60 – Masonry wall
f) Permanent diagonal bracing must be installed at the gable ends of the roof. Bracing members must be minimum 38x76mm and should be nailed to the underside of rafters with no. 75x3.5mm wire nails. They must run in a straight line from the apex of the truss to the heel of the truss at approximately 45° and must be connected to the wall plate. Refer Figure 20.

For spans greater than 6 metres use 38x114mm (Grade 4) bracing members bolted to the underside of shelf with 2 No M12 bolts. Refer figure 20 detail standard – heel bracing.

g) To prevent buckling of the long webs (exceeding 1.8 metres), cantilever roofs and the tie beam where no ceiling battens are used, longitudinal runners should be fixed to the members. The runners must be 38x76 nailed to each truss with two no. 75x3.5mm wire nails at each intersection. All longitudinal runner members must be cross braced. Refer to Figure 21.

h) Having completed all the necessary bracing the trusses must be permanently anchored to the wall and wall plate with the metal straps or galvanised wire which have been built into the wall. Refer to Figure 22.

Note: Refer to SANS 10243 “The Design, Manufacture and Erection of Timber” for an update of bracing details which may supersede the details shown here.

Roof anchorage

To resist any uplift forces, it is essential that every truss or rafter be properly anchored to the supporting wall. This can be carried out by using galvanised steel straps 30x1.6mm or 4mm diameter galvanised steel wire, embedded at least 300mm deep into the wall. The 4mm diameter steel wire should consist of two strands which should be taken up on either side of the rafter, twisted together and nailed to prevent untwisting.

In the case of timber frame building, any roof truss, rafter or beam shall be securely fastened to the wall construction in accordance with SANS 10082 1988 “Timber Buildings.”

Legend

- 21 – Truss
- 22 – Rafter
- 26 – Wall plate
- 33 – Cross bracing
- 34 – Longitudinal runner bracing
- 35 – Diagonal bracing
- 40 – Fixing nail
- 42 – Metal strap
- 60 – Masonry wall
The use of rafters spanning from wall to wall is a regular feature of modern architecture. The ceiling follows the slope of the roof, or it can be fixed on top of the rafters. Refer to Figure 23

The rafters and wall plate are anchored as previously described, using either 30x1.6mm metal straps or 4mm diameter galvanised wire built into the wall.

The rafters must be designed simply supported and the loading uniformly distributed over the full span, in accordance with SANS 10163 “The Structural Use of Timber.” Timber quality is as specified in Section 5.2. Lateral stability for the beams is provided by the tile battens.

Figure 23: Use of rafters

Legend
16 – Batten
19 – Verge counter batten
22 – Rafter
60 – Masonry wall
Member sizes for tiled roofs

The following sizes of rafters are for tiled roofs with tiles having a mass of 55kg/m² and are designed for 0.5 kN/m² live load and a light ceiling and for pitches up to 25°. The following criteria has been applied, namely permissible stress and a final deflection of SPAN/200.

The batten spacing is assumed to be less or equal to 360mm. Grade number (Gr#) in the table refers to the grade of timber. Only timber commonly available in commercial quantities is listed.

Table 5: Timber sizes and grades for concrete tiled roofs at maximum spans of rafters

<table>
<thead>
<tr>
<th>Span of Rafters mm</th>
<th>760</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>38 x 152 Gr 4</td>
<td>38 x 152 Gr 4</td>
<td>38 x 152 Gr 4</td>
</tr>
<tr>
<td></td>
<td>40 x 128 Lam</td>
<td>40 x 128 Lam</td>
<td>40 x 128 Lam</td>
</tr>
<tr>
<td>3000</td>
<td>38 x 228 Gr 4</td>
<td>38 x 228 Gr 4</td>
<td>38 x 228 Gr 4</td>
</tr>
<tr>
<td></td>
<td>38 x 152 Gr 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>50 x 228 Gr 5</td>
<td>50 x 228 Gr 5</td>
<td>76 x 228 Gr 4</td>
</tr>
<tr>
<td></td>
<td>76 x 228 Gr 4</td>
<td>65 x 228 Lam</td>
<td>65 x 228 Lam</td>
</tr>
<tr>
<td></td>
<td>38 x 195 Lam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>76 x 228 Gr 4</td>
<td>65 x 228 Lam</td>
<td>65 x 228 Lam</td>
</tr>
<tr>
<td></td>
<td>65 x 195 Lam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>65 x 261 Lam</td>
<td>65 x 261 Lam</td>
<td>65 x 295 Lam</td>
</tr>
</tbody>
</table>

Note: Batten sizes must be in accordance with Table 3
5.12 Fixing of Battens

Timber used for battens must comply with SANS 1783-4. The battens should be straight, free from major defects and in long lengths. Joints in battens should be staggered on rafters. Size of battens must be in accordance with spacing of trusses. Refer to Table 3.

Batten centres will depend on the type of concrete roof tile which is to be used. For information on the full range of roof tiles refer to manufacturer’s literature. The following checks should be carried out before fixing of the battens commences.

Check:
- Trusses for alignment/straightness
- Truss spacing
- Truss anchorage to wall and wall plate
- Pitch of roof
- Construction of hips and valleys to engineer’s details
- Bracing of trusses
- Squareness of roof
- Brickwork and plastering to gables, parapets chimney and beam filling has been completed.

Battening procedure:

a) Establish the roof eaves overhang. Work out the number of full roof tiles to cover the distance from eaves to ridge. To avoid cutting tiles, adjust the eaves overhang allowing for the thickness of fascia plus 50mm overhang of the first row of tiles past the fascia. Ensure that the last of the battens at the ridge is not more than 25mm (for flat profile 25-50mm-refer to manufacture) from the apex. Refer to Figure 26.

b) Trim rafters at the eaves and fix tilting batten and fascia board. Tilting batten to be 14mm higher than the other battens to ensure roof tiles are in the same plane.

c) Fix underlay over trusses by nailing, with the minimum number of non-corrosive clout nails, to the centres of the rafters of the trusses. It is not necessary to fix the undertile membrane tightly over the rafters.

d) Mark the batten centres at each end of the roof and strike a chalk line.

Legend

- Batten
- Tilting batten
- Rafter
- Fascia
- Undertile membrane
- Undertile membrane support
- Tilting dimension

Figure 24: First batten with fascia
Figure 25: First batten without fascia
Figure 26: Ridge batten position
e) Fix battens according to the chalk lines allowing sufficient overhang at gable ends for trimming. The length of nails for fixing battens should be batten thickness plus 40mm. For a neat fit where the battens intersect at hips and valleys, the battens should be mitred.

f) Establish verge overhang using width of full tiles along the eaves and along the ridge. Mark at top and tilting batten only. Strike a chalk line between the two points and cut the battens. Refer to Figure 27

g) If verge tiles are used, the tilting batten and fascia board must extend past the verge counter batten by 25mm to allow for the tilt in the first verge tile.

h) With bold profile roof tiles the verge counter batten must be raised above the batten line to ensure good fixing of the verge tiles. Refer to Figure 28

With all the profiles the verge counter batten must be positioned flush with the batten line. Refer to Figure 29

The roof is now ready for tiling.

Legend

01 – Roof tile
04 – Verge tile
10 – Fixing point
13 – Chalk line
16 – Batten
17 – Tilting batten
19 – Verge counter batten
21 – Truss
40 – Fixing nail
43 – Undertile membrane
60 – Masonry wall

Figure 27: Setting out a verge

Figure 28: Verge counter batten for bold profile tiles

Figure 29: Verge counter batten for all other profiles
Appendix A: Legend

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Roof tile</td>
<td>36</td>
<td>Boarding</td>
</tr>
<tr>
<td>02</td>
<td>Taper ridge</td>
<td>37</td>
<td>Eaves lining</td>
</tr>
<tr>
<td>03</td>
<td>Butt ridge</td>
<td>38</td>
<td>Soffit lining</td>
</tr>
<tr>
<td>04</td>
<td>Verge tile</td>
<td>39</td>
<td>Prop</td>
</tr>
<tr>
<td>05</td>
<td>Hip starter</td>
<td>40</td>
<td>Fixing nail</td>
</tr>
<tr>
<td>06</td>
<td>Ventilated ridge</td>
<td>41</td>
<td>Bolt</td>
</tr>
<tr>
<td>07</td>
<td>Monopitch ridge</td>
<td>42</td>
<td>Metal strap</td>
</tr>
<tr>
<td>08</td>
<td>Storm clip</td>
<td>43</td>
<td>Undertile membrane</td>
</tr>
<tr>
<td>09</td>
<td>Hip iron</td>
<td>44</td>
<td>Undertile membrane overlap</td>
</tr>
<tr>
<td>10</td>
<td>Fixing point</td>
<td>45</td>
<td>Underlay strip</td>
</tr>
<tr>
<td>11</td>
<td>Mortar bed</td>
<td>46</td>
<td>Overlay strip</td>
</tr>
<tr>
<td>12</td>
<td>Mortar joint</td>
<td>47</td>
<td>Undertile membrane support</td>
</tr>
<tr>
<td>13</td>
<td>Chalk line</td>
<td>48</td>
<td>Gutter</td>
</tr>
<tr>
<td>14</td>
<td>Striking chalk line</td>
<td>49</td>
<td>Box gutter</td>
</tr>
<tr>
<td>15</td>
<td>Tile stack</td>
<td>50</td>
<td>Concealed gutter</td>
</tr>
<tr>
<td>16</td>
<td>Batten</td>
<td>51</td>
<td>Back gutter</td>
</tr>
<tr>
<td>17</td>
<td>Tilting batten</td>
<td>52</td>
<td>Chimney back gutter</td>
</tr>
<tr>
<td>18</td>
<td>Counter batten</td>
<td>53</td>
<td>Valley gutter</td>
</tr>
<tr>
<td>19</td>
<td>Verge counter batten</td>
<td>54</td>
<td>Flashing</td>
</tr>
<tr>
<td>20</td>
<td>Valley counter batten</td>
<td>55</td>
<td>Apron flashing</td>
</tr>
<tr>
<td>21</td>
<td>Truss</td>
<td>56</td>
<td>Side wall flashing</td>
</tr>
<tr>
<td>22</td>
<td>Rafter</td>
<td>57</td>
<td>Back gutter flashing</td>
</tr>
<tr>
<td>23</td>
<td>Tie beam</td>
<td>58</td>
<td>Cover flashing</td>
</tr>
<tr>
<td>24</td>
<td>King post</td>
<td>59</td>
<td>Soakers</td>
</tr>
<tr>
<td>25</td>
<td>Web</td>
<td>60</td>
<td>Masonry wall</td>
</tr>
<tr>
<td>26</td>
<td>Wall plate</td>
<td>61</td>
<td>Chimney stack</td>
</tr>
<tr>
<td>27</td>
<td>Valley rafter</td>
<td>62</td>
<td>Air Brick</td>
</tr>
<tr>
<td>28</td>
<td>Hip rafter</td>
<td>63</td>
<td>Tilting dimension</td>
</tr>
<tr>
<td>29</td>
<td>Hip tree</td>
<td>64</td>
<td>Cut-off mark</td>
</tr>
<tr>
<td>30</td>
<td>Timber support</td>
<td>65</td>
<td>Off-cut</td>
</tr>
<tr>
<td>31</td>
<td>Timber framing</td>
<td>66</td>
<td>Vent pipe</td>
</tr>
<tr>
<td>32</td>
<td>Fascia</td>
<td>67</td>
<td>Vent pipe flashing</td>
</tr>
<tr>
<td>33</td>
<td>Cross bracing</td>
<td>68</td>
<td>Damp proof course (DPC)</td>
</tr>
<tr>
<td>34</td>
<td>Longitudinal runner bracing</td>
<td>69</td>
<td>Straight edge</td>
</tr>
<tr>
<td>35</td>
<td>Diagonal bracing</td>
<td>70</td>
<td>Mortar closure</td>
</tr>
</tbody>
</table>
Appendix B: Source Documents

1. MiTek South Africa (Pty) Ltd, Timber Roof Truss System.
5. SANS 10163, The structural use of timber.
19. Photographs: Marley Roofing
We acknowledge the support of the following major raw material suppliers:

![Holcim Logos](image1)

![Lafarge South Africa Logos](image2)

![NPC Logos](image3)

![PPC Logos](image4)
Roof Tile Division Members (May 2007)

<table>
<thead>
<tr>
<th>Company</th>
<th>Head Office</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blikk Roofing</td>
<td>P.O. Box 584</td>
<td>Tel: (011) 316 1200</td>
</tr>
<tr>
<td></td>
<td>1 Nigel 1420</td>
<td>Fax: (011) 316 1300</td>
</tr>
<tr>
<td>Concor Technico</td>
<td>P.O. Box 798</td>
<td>Tel: (011) 495 2000</td>
</tr>
<tr>
<td></td>
<td>Crane Mines 2020</td>
<td>Fax: (011) 495 2400</td>
</tr>
<tr>
<td>Eagle Roof Tiles</td>
<td>P.O. Box 210</td>
<td>Tel: (044) 874 0100</td>
</tr>
<tr>
<td></td>
<td>George 8320</td>
<td>Fax: (044) 874 0301</td>
</tr>
<tr>
<td>Insa Masonry Products</td>
<td>P.O. Box 3200</td>
<td>Tel: (031) 765 1215</td>
</tr>
<tr>
<td></td>
<td>Cambridge 5260</td>
<td>Fax: (031) 765 1201</td>
</tr>
<tr>
<td>Infraset</td>
<td>Private Bag 10005</td>
<td>Tel: (011) 632 0300</td>
</tr>
<tr>
<td></td>
<td>Lyttleton 0140</td>
<td>Fax: (011) 632 0312</td>
</tr>
<tr>
<td>Liturg Roofing South Africa</td>
<td>P.O. Box 1468</td>
<td>Tel: (011) 430 8000</td>
</tr>
<tr>
<td></td>
<td>Vereeniging 1000</td>
<td>Fax: (011) 430 8000</td>
</tr>
<tr>
<td>Liturg Roofing South Africa</td>
<td>P.O. Box 1468</td>
<td>Tel: (011) 430 8000</td>
</tr>
<tr>
<td></td>
<td>Vereeniging 1900</td>
<td>Fax: (011) 430 8000</td>
</tr>
<tr>
<td>Marley Roofing</td>
<td>P.O. Box 127</td>
<td>Tel: (081) 316 2122</td>
</tr>
<tr>
<td></td>
<td>Diffordstown 1665</td>
<td>Fax: (081) 316 1618</td>
</tr>
</tbody>
</table>

* CMA Roofing System Licence Holders